Presented at Fields Institute

Barak Pearlmutter, Hamilton Institute, Maynooth
Near-Criticality and Pathology in the Central Nervous System
Abstract

Suchi Saria, Johns Hopkins University
Individualizing Healthcare with Machine Learning (Video)
Abstract

Peter Grünwald, Leiden University
Learning the learning rate: how to repair Bayes when the model is wrong (Video)
Abstract

Emma Brunskill, Stanford University
Reinforcement Learning When Experience is Expensive (Video)
Abstract

Josh Tenenbaum, Massachusetts Institute of Technology
Building machines that learn and think like humans (Video)
Abstract

Chris Maddison, University of Oxford
Relaxed Gradient Estimators (Video)
Abstract

Yair Weiss, Hebrew University
Learning the Statistics of Full Images (Video)
Abstract

Christopher Manning, Stanford University
Towards a better model for neural network reasoning (Video)
Abstract

Vlad Mnih, DeepMind
Efficient Multi-Task Deep Reinforcement Learning (Video)
Abstract

Stephen Friend, Sage Bionetworks
Exploring fundamental unknowns that prevent us from using our devices to navigate between disease and health (Video)
Abstract

Ilya Sutskever, OpenAI
Meta Learning and Self Play (Video)
Abstract

Yee Whye Teh, University of Oxford
DisTraL: Distill and Transfer for Deep Multitask Reinforcement Learning (Video)
Abstract

Guang Wei Yu (Layer 6), Mohammad Islam (Wattpad), Putra anggala (Shopify), and Javier Moreno (Rubikloud)
Recommendation Systems (Video)
Abstract

Jennifer Listgarten, Microsoft Research
From Genetics to CRISPR Gene Editing with Machine Learning (Video)
Abstract

Chris Williams, Univeristy of Edinburgh
Artificial Intelligence for Data Analytics (Video)
Abstract

Jon Shlens, Google Brain
Learning representations of the visual world
Abstract

Geoffrey Hinton, University of Toronto
What is wrong with convolutional neural nets? (Video)
Abstract

Scroll to Top