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* Lq-distance?
« “Total variation” distance
« “The statistical” distance
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Well-studied problem with many applications!
[Feldman et al. "06; Suresh et al. "14; Ashtiani et al. "17; Diakonikolas et al. “14-"18, etc.]

Q [D16]: “For a distribution class F, is there a complexity measure that
characterizes the sample complexity of F?”

“VC-dimension” of distribution learning?
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The case of Gaussian Mixture Models

Studied for over a century!

* Popular in practice

* One of the most basic universal density approximators /
* Building blocks for more sophisticated density classes ‘?’

* Natural way of extending Gaussians to multi-modal distributions

Surprisingly, not yet fully understood
* Sample complexity
* Computational complexity



* f(x) = wiN(x|pq, Z1) + W N(x|pp, Z2) + waN(x|us, E3)
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F : GMMs with k components in R4

How many samples is needed to
recover f € F within Lq-error €?

#samples ~ m(d, k, €)

# samples & m(d, k, €, {) (Worst-Case/Minimax)

Omax

No dependence on ||ull, maxs Fmin e

Omin
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Outline

We introduce distribution compression schemes:

A generic and simple technique for proving
sample complexity upper bounds
for density estimation

For mixture of Gaussians with k components in R%:

» We show O (kdz) is sufficient Settles the sample
complexity of GMMs

(within logarithmic factors)

kd?
» We show () ( ) is necessary

*Note: 0 and Q hide polylog(kd/€) factors.
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Learning Gaussians

Single Gaussian in R<.
2
0 (i—z) =0 (#pamms) samples

€2

are sufficient.

Mixture of k Gaussians in R?.
2
QI Are O (kd ) —0 (#params)

€2 €2

samples sufficient? (Open problem)

Note: We aim to recover density, not parameters of the mixture.
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Where is the challenge?

* The decision boundary
becomes very complex
when the number of
components is higher

e VC-dimension?

,,,,,

66666

A more intuitive approach?
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Compression: an example

Given S where |[S| > 1/€
w.h.p. there exists
Z ={x{,x9,x3} CS
based on which
the true distribution
can be reconstructed
up to error e
(The decoder is fixed
before seeing the sample)




Compression: an example

This class of distributions

: 1 :
admits (3,;)-compressmn
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Compression Framework

F: a class of distributions (e.g. Gaussians)

m i.i.d. samples ¢ .. L points : — Compression
fromDEF | o @ © ®

ﬂ reconstruct _

) — ) = T

W/

®

Knows D, F Alice Bob Knows F

If Alice sends t points from m points and Bob approximates D
then we say F admits (¢, m)-compression.



Distribution Compression Schemes

Theorem [aBHLMP ‘18] If F has a compression scheme of size (t, m)
then sample complexity of learning F is

[t
0 (6_2 + m) O(-) hides polylog factors

\ /7

Small compression schemes imply
sample-efficient algorithms.




Distribution Compression Schemes

Theorem [aBHLMP ‘18] If F has a compression scheme of size (t, m)
then sample complexity of learning F is

[t
0 (E_Z + m) O(-) hides polylog factors

\ /7

Small compression schemes imply
sample-efficient algorithms.

There is a classic analogue in supervised learning
[Littlestone and Warmuth, 1986]
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Compressing Gaussians in R

N(u0?)
Xl XZ
® oF—eo—e— o—o o
u—o z Hro
X2+X1 XZ_X]_
~ U ~ O

2 2
Admits (2, %)-compression!
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Compression of Mixtures

Cheat: assume a uniform mixture. N (.Us» 032 )

X1 =l — 01 X3 ® Uy — 0 X5 = Uz — 03
Xy = Uy + 01 Xy = Uy + 0, Xg = Uz +03
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Compression Theorem for Mixtures

Theorem [aBHLMP ‘18] If F has a compression scheme of size (£, m)
then k mixtures of F is admits (kt, km) compression.

Distribution compression schemes extend to
mixture classes automatically!

So for the case of GMMs in R it is enough to come up with
a good compression scheme for a single Gaussian!
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Learning Mixtures of Gaussians

‘ -
. . . o =
Encoding center and axes of ellipsoid 7 TP o
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is sufficient to recover N (i, ). P o]
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Is 0 (d*,~) compression is possible? v e
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Ellipsoid defined by v, 2.
Points drawn from N (u, 2).



Why not just discretize the parameters?
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Why not just discretize the parameters?

Discretization does not
work because...

* uisunbounded

e Y isunbounded
e And..




Why not just discretize the parameters?

Omax

can be large

Omin

Not exactly
a parameter
estimation
problem!




Learning Mixtures of Gaussians

Encoding center and axes of ellipsoid e ® \\‘
is sufficient to recover N (i, 2). o ! ®
4 /
//’ //‘
/ 4
~ 2 1 . . . O,’ /
IsO (d ’Z) compression is possible? ; e
The technical challenge is Y g%
. . . @ _e
encoding the d eigen-vectors Q@ ~=--- /
1“4 1/4 o 2 .
accurately” using only d“ points. Ellipsoid defined by 1, 3.

Points drawn from N (y, ).



Application: Learning Mixtures of Gaussians
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Application: Learning Mixtures of Gaussians

Theorem [ABHLMP 18] Sample complexity for learning mixtures of
k Gaussians in R up to L;-error € is

_ (kd?\ _
0 ez O(:) hides polylog factors

* Improves upon:
* 0(k*d*/e*) via a VC-dimension argument
e 0(kd?/e*) [Ashtiani, Ben-David, Mehrabian “17]

* We show this is nearly-tight!
» O(kd?/e?) samples are necessary!
- Along the way we had to prove 2(d?/e?) lower bound for Gaussians!
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Summary

* Introduced compression schemes for density estimation
 Simple and generic
Naturally extends to mixture classes

* Application
* Almost-tight bounds for GMMs

* Q: What if the target is just “almost a GMM”?

* Compression can be extended to the agnostic/robust setting!

* Q: Does compression size characterize sample complexity?

» Still an open problem...
* It is (almost) the case for supervised learning [Moran and Yehudayoff, 2016].

* Q: Polynomial time algorithm for learning GMMs?



Thanks for
listening!



