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• “Total variation“ distance 
• “The statistical” distance



Density estimation

Unknown 
Distribution 𝒟

i.i.d. samples ෡𝒟 ≈ 𝒟
(in 𝐿1-distance)

Well-studied problem with many applications!
[Feldman et al. ’06; Suresh et al. ’14; Ashtiani et al. ’17; Diakonikolas et al. ‘14-’18, etc.]

Q [D ‘16]: “For a distribution class ℱ, is there a complexity measure that 
characterizes the sample complexity of ℱ?”



Density estimation

Unknown 
Distribution 𝒟

i.i.d. samples ෡𝒟 ≈ 𝒟
(in 𝐿1-distance)

Well-studied problem with many applications!
[Feldman et al. ’06; Suresh et al. ’14; Ashtiani et al. ’17; Diakonikolas et al. ‘14-’18, etc.]

Q [D ‘16]: “For a distribution class ℱ, is there a complexity measure that 
characterizes the sample complexity of ℱ?”

“VC-dimension” of distribution learning?
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The case of Gaussian Mixture Models

Studied for over a century!

• Popular in practice

• One of the most basic universal density approximators

• Building blocks for more sophisticated density classes

• Natural way of extending Gaussians to multi-modal distributions

Surprisingly, not yet fully understood

• Sample complexity

• Computational complexity



• f 𝑥 = w1𝑁 𝑥|𝜇1, Σ1 +w2𝑁 𝑥|𝜇2, Σ2 +w3𝑁(𝑥|𝜇3, Σ3)
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𝓕 : GMMs with 𝒌 components in ℝ𝒅

How many samples is needed to
recover 𝐟 ∈ 𝓕 within 𝑳𝟏-error 𝝐?

#samples ~ 𝒎(𝒅, 𝒌, 𝝐)

#samples ~ 𝒎(𝒅, 𝒌, 𝝐, 𝒇) (Worst-Case/Minimax)

No dependence on 𝜇 , 𝜎𝑚𝑎𝑥, 𝜎𝑚𝑖𝑛,
𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
,…
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We introduce distribution compression schemes:

A generic and simple technique for proving 
sample complexity upper bounds 

for density estimation 

For mixture of Gaussians with 𝑘 components in ℝ𝑑:

• We show ෨𝑂
𝑘𝑑2

𝜖2
is sufficient

• We show ෩Ω
𝑘𝑑2

𝜖2
is necessary

*Note: ෨𝑂 and ෩Ω hide polylog(𝑘𝑑/𝜖) factors.

Settles the sample 
complexity of GMMs 
(within logarithmic factors)



Learning Gaussians

Single Gaussian in ℝ𝒅.

𝑂
𝑑2

𝜖2
= 𝑂

#𝑝𝑎𝑟𝑎𝑚𝑠

𝜖2
samples 

are sufficient.



Learning Gaussians

Single Gaussian in ℝ𝒅.

𝑂
𝑑2

𝜖2
= 𝑂

#𝑝𝑎𝑟𝑎𝑚𝑠

𝜖2
samples 

are sufficient.

Mixture of 𝒌 Gaussians in ℝ𝒅.

Q: Are 𝑂
𝑘𝑑2

𝜖2
= 𝑂

#𝑝𝑎𝑟𝑎𝑚𝑠

𝜖2

samples sufficient? (Open problem)

Note: We aim to recover density, not parameters of the mixture.
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• For a moment look
at this as a
binary classification
problem.

• The decision boundary
has a simple quadratic form!

• VC-dim = 𝑂(𝑑2)
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Where is the challenge?

• The decision boundary
becomes very complex
when the number of 
components is higher

• VC-dimension?

A more intuitive approach?
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Σ1 = Σ2 = Σ3 = 𝐼
w1 = w2 = w3 = 1/3

but
𝜇1, 𝜇2, 𝜇3 are unknown
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Compression: an example

Given 𝑆 where 𝑺 > 𝟏/𝝐
w.h.p. there exists
𝒁 = 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 ⊂ 𝑆
based on which
the true distribution 
can be reconstructed 
up to error 𝜖
(The decoder is fixed 
before seeing the sample)



Compression: an example

This class of distributions

admits 𝟑,
𝟏

𝝐
-compression
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Compression Framework

If Alice sends 𝑡 points from 𝑚 points and Bob approximates 𝒟
then we say ℱ admits (𝑡,𝑚)-compression.

𝑚 i.i.d. samples
from 𝒟 ∈ ℱ

෡𝒟 ≈ 𝒟
reconstruct

Knows 𝒟, ℱ Knows ℱ

ℱ: a class of distributions (e.g. Gaussians)

Compression𝑡 points
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sample-efficient algorithms.

෩O ∙ hides polylog factors



Theorem [ABHLMP ‘18] If ℱ has a compression scheme of size (𝑡,𝑚)
then sample complexity of learning ℱ is

෩𝑶
𝒕

𝝐𝟐
+𝒎

Distribution Compression Schemes

Small compression schemes imply
sample-efficient algorithms.

There is a classic analogue in supervised learning
[Littlestone and Warmuth, 1986]

෩O ∙ hides polylog factors
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𝜇 𝜇 + 𝜎𝜇 − 𝜎

Compressing Gaussians in ℝ

𝑋1 𝑋2

𝒩 𝜇, 𝜎2

Admits (𝟐,
𝟏

𝝐
)-compression!

𝑋2 − 𝑋1
2

≈ 𝜎
𝑋2 + 𝑋1

2
≈ 𝜇



Compression of Mixtures

Cheat: assume a uniform mixture.

𝒩 𝜇1, 𝜎1
2

𝒩 𝜇2, 𝜎2
2

𝒩 𝜇3, 𝜎3
2



Compression of Mixtures

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5𝑋6

Cheat: assume a uniform mixture.

𝒩 𝜇1, 𝜎1
2

𝒩 𝜇2, 𝜎2
2

𝒩 𝜇3, 𝜎3
2

𝑋1 ≈ 𝜇1 − 𝜎1
𝑋2 ≈ 𝜇1 + 𝜎1

𝑋3 ≈ 𝜇2 − 𝜎2
𝑋4 ≈ 𝜇2 + 𝜎2

𝑋5 ≈ 𝜇3 − 𝜎3
𝑋6 ≈ 𝜇3 + 𝜎3



Compression Theorem for Mixtures

Distribution compression schemes extend to 
mixture classes automatically!

Theorem [ABHLMP ‘18] If ℱ has a compression scheme of size (𝒕,𝒎)
then 𝒌 mixtures of ℱ is admits (𝒌𝒕, 𝒌𝒎) compression.



Compression Theorem for Mixtures

Distribution compression schemes extend to 
mixture classes automatically!

So for the case of GMMs in ℝ𝒅 it is enough to come up with
a good compression scheme for a single Gaussian!

Theorem [ABHLMP ‘18] If ℱ has a compression scheme of size (𝒕,𝒎)
then 𝒌 mixtures of ℱ is admits (𝒌𝒕, 𝒌𝒎) compression.
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Is ෨𝑂 𝑑2,
1

𝜖
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𝑣1 𝑣2

Ellipsoid defined by 𝜇, Σ.
Points drawn from 𝒩 𝜇, Σ .
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Why not just discretize the parameters?

Discretization does not 
work because…

• 𝜇 is unbounded
• Σ is unbounded
• And…



Why not just discretize the parameters?

𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
can be large

Not exactly
a parameter 
estimation
problem! 



Learning Mixtures of Gaussians

Encoding center and axes of ellipsoid 
is sufficient to recover 𝒩 𝜇, Σ . 

Is ෨𝑂 𝑑2,
1

𝜖
compression is possible?

The technical challenge is 
encoding the 𝒅 eigen-vectors 

“accurately” using only 𝒅𝟐 points.

𝑣1 𝑣2

Ellipsoid defined by 𝜇, Σ.
Points drawn from 𝒩 𝜇, Σ .

𝑋1

𝑋2



Application: Learning Mixtures of Gaussians
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Theorem [ABHLMP ’18] Sample complexity for learning mixtures of 
𝑘 Gaussians in ℝ𝑑 up to 𝐿1-error 𝜖 is

෩𝐎
𝒌𝒅𝟐

𝝐𝟐
෩O ∙ hides polylog factors

• Improves upon:
• 𝑂(𝑘4𝑑4/𝜖2) via a VC-dimension argument
• ෨𝑂(𝑘𝑑2/𝜖4) [Ashtiani, Ben-David, Mehrabian ‘17]

• We show this is nearly-tight! 
• ෩Ω 𝑘𝑑2/𝜖2 samples are necessary!

• Along the way we had to prove ෩𝜴 𝒅𝟐/𝝐𝟐 lower bound for Gaussians!
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• Simple and generic
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• Application
• Almost-tight bounds for GMMs

• Q: What if the target is just “almost a GMM”?
• Compression can be extended to the agnostic/robust setting!

• Q: Does compression size characterize sample complexity?
• Still an open problem…
• It is (almost) the case for supervised learning [Moran and Yehudayoff, 2016].

• Q: Polynomial time algorithm for learning GMMs?

Thanks for 
listening!


