
             
 
 
 

Implementing AI in healthcare  
Vector-SickKids Health AI Deployment Symposium, Toronto, Ontario, Canada 
Event Date:​ October 30, 2019 
Published Date​: March 24, 2020 
 
 
Erik Drysdale *​, Elham Dolatabadi , , Corey Chivers , Vincent Liu , Such Saria , Mark Sendak ,            1 2 3 4 5 6 7

Jenna Wiens , Michael Brudno​1,2,3​, Amelia Hoyt​1​, Mjaye Mazwi​1​, Muhammad Mamdani​2,3, , Devin           8 9

Singh​1​, Vanessa Allen , Carolyn McGregor , Heather Ross , Antonio Szeto , Amol Anand           10 11 12 13

Verma​2,8​, Bo Wang​2,11,13​, P. Alison Paprica​2,3​, Anna Goldenberg​1,2,3 

 
 
  

1 The Hospital for Sick Children 
2 University of Toronto 
3 The Vector Institute 
4 The University of Pennsylvania Health System 
5 Kaiser Permanente Northern California Division of Research 
6 Johns Hopkins University 
7 Duke Institute for Health Innovation 
8 University of Michigan in Ann Arbor 
9 St. Michael's Hospital 
10 Public Health Ontario 
11 Ontario Tech University 
12 University Health Network 
13 University of Waterloo 

*Corresponding author: erik.drysdale@sickkids.ca 

https://vectorinstitute.ai/health-research/ 

https://vectorinstitute.ai/health-research/


Whitepaper: Implementing AI in healthcare 

Executive Summary 
 
Advances in artificial intelligence (AI), and its subfield machine learning (ML), can be seen in               
almost every domain of life, including cutting-edge health research.​1,2 However, only a tiny             
fraction of health AI/ML systems described in research papers makes its way into clinical              
practice. To help address this issue the Hospital for Sick Children (SickKids) and the Vector               
Institute for Artificial Intelligence (Vector) organized the Vector-SickKids Health AI Deployment           
Symposium on October 30, 2019 attended by 166 clinicians, computer scientists, policy makers,             
and healthcare administrators. The aim was to showcase real-world examples of AI moving             
from the research lab to the clinic. Speakers came from a variety of Canadian and US                
institutions including St. Michael’s Hospital, the University Health Network, the University of            
Waterloo, Public Health Ontario, Ontario Tech University, the University of Michigan, Northern            
California Kaiser Permanente, Johns Hopkins University, University of Pennsylvania, and Duke           
University. The successes and challenges that each project experienced provided valuable           
insights into the new and evolving field of AI for health. Each speaker was asked to prepare a                  
structured presentation which touched upon the following topics: 

● Prerequisites for deployment (such as data access) 
● AI Applications  
● Evaluation procedures 
● Visualization strategies 
● Team building 
● Ethical considerations 
● Deployment pipeline 
● Lessons learned 

The focus was on identifying concrete “do’s and don’ts” for deploying ML into healthcare.  

The deployment strategies for ML in healthcare are currently ad hoc for most applications. A               
lack of defined rules and best practices leads to provisional solutions that may be suboptimal.               
Through a better knowledge of real-world implementations several common themes surfaced.           
These examples are a first step in understanding what is required to define pathways for AI/ML                
deployment. Academic researchers in the field of health AI/ML generally focus on factors             
required for successful ​data science ranging from statistical analysis and ML algorithms to             
database access and institutional review board approval. ​Implementation science is an equally            
important discipline that is needed to bring ML tools to the bedside.​3 This field of research is by                  
no means new, and has been studied extensively in the context of translating medical research               
into clinical practice.​4 In a related vein, understanding how and why institutions adopt and              
maintain technologies is also an important component of any healthcare technology and change             
management more broadly.​5,6 Implementation science questions in ML for healthcare include           
‘What are the operational components needed to maintain and monitor a system?’ and ‘How will               
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feedback be enabled and incorporated into practice?’. These questions need to be answered for              
the appropriate design and successful deployment of AI/ML models. During model           
development, in order to choose algorithms, features, and evaluation metrics that will lead to              
robust and institutionally appropriate systems, research teams need to take the entire pipeline of              
project development into view.  
 
Three key interrelated themes were raised throughout the symposium: contextualization,          
life-cycle planning, and stakeholder involvement.  

Contextualization​: AI/ML tools that are deployed must be contextualized in an existing            
workflow. Technology necessarily operates within existing norms and practices--especially in          
healthcare​7​. For example, in the case of a tool that is meant to detect sepsis early, a researcher                  
must be engaged with how the disease is currently being detected in the hospital. If the                
institution does a good job at detecting all patients who develop sepsis then perhaps the               
algorithm can help to expedite this detection process. In contrast, if some patients have a               
diagnosis that is being systematically missed, evaluation should focus on these challenging            
patients. By contextualizing algorithms in an existing workflow, researchers will ensure they are             
providing appropriate solutions to existing problems rather than ones that are of less interest to               
the end users. Tools designed only for ​in-silico validation will inevitably struggle to obtain uptake               
by physicians and nurses and limit project success. Understanding clinical context also allows             
algorithm evaluation to match the real-time environment. Especially for early warning systems,            
having IT systems which record accurate time-stamps is essential to establishing           
outcome-independent time periods in hospital settings.  

Life-cycle Planning​: All speakers at the symposium identified institution-specific project cycle           
management schema that are being used to build systems in the fastest possible time with the                
largest clinical benefit. These frameworks generally include three components: the          
research/scientific stage, the technical/implementation stage, and the operational/maintenance        
stage. The overwhelming number of papers being published in top-tier ML and/or healthcare             
journals are focused on the research/scientific stage where attention is focused on the details of               
dataset features and ​in-silico algorithm performance. At the technical/implementation stage,          
questions regarding how fast data can be extracted from a hospital’s EHR system and how the                
system will be evaluated in real-time need to be addressed. The use of “silent period” occurs in                 
the technical implementation stage when an algorithm is first embedded into an institution’s IT              
system and makes real-time predictions without communicating them or impacting clinical care            
(see Appendix A2 for more discussion of a model’s silent period). Further, while existing              
statistical procedures to evaluate model performance can be used for these trials, there are              
additional considerations when the project moves to the operational/maintenance stage around           
how the algorithm is to be updated and how it will respond to changes in the underlying data                  
stream (such as new data fields). Having feedback for AI projects is essential for ensuring               
sustainability and trust. Commercial AI tools are constantly being updated with new data, edge              
cases, and examples of failures. Responsible AI/ML requires that there is accountability and             
clarity about who is responsible for ongoing adjustments to the algorithm, assessing            
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human-computer interactions, resource procurement, and timely delivery to the front end. On an             
institutional level, this means having a strong mandate that can help to sustain model              
development and pull in the necessary resources. These adjustments and accountability must            
be linked to broader considerations around fairness, including issues of racial bias and             
unintended consequences for vulnerable groups.  

Stakeholder involvement​: No algorithm is an island unto itself. Every successful project            
presented at the symposium was enabled by the intersection of operational and research             
leadership along with a variety of clinical stakeholders. This is essential to address important              
risks such as alarm fatigue, i.e., the possibility that AI system alerts are increasingly ignored by                
clinicians. Interestingly, a common theme among presenters was that during initial deployment            
(the silent period), the AI/ML prediction would be sent to someone other than the physician or                
nurse who assesses and validates the signal in context before passing it on for action. As health                 
AI/ML research matures, we hope to see a deployment mindset affect how research is carried               
out and discussed. Commonly reported metrics such as the Area Under the Receiver Operator              
Characteristic (AUROC), may be useful for understanding the level of signal in the data, but               
need to be accompanied by actually calibrated metrics such as the positive predictive value if               
they are going to resonate with and be meaningful for clinicians. AI/ML researchers also need to                
consider how false positives and negatives are to be balanced, and the risks/costs associated              
with specific thresholds. Deeper involvement of stakeholders can take many forms. For            
example, rather than having discussions around how an algorithm could be implemented in the              
“future direction” sections of academic papers, they could be moved directly into the main body               
of research signalling that they are considered from the beginning of model development.  
 
AI/ML tools in healthcare can help to improve patient outcomes, reduce costs, and improve the               
workplace experience of healthcare practitioners, but they have to be taken out of research and               
into practice in a responsible way. Despite the thousands of research articles about AI/ML that               
have the potential to improve health and healthcare, information about how to responsibly             
deploy health AI/ML models is hard to find​8​. By providing structured information about             
examples of successfully developed and deployed systems, this report aims to initiate a             
discussion around the key ingredients for success that will enable AI/ML developments to have              
a measurable and positive presence at the bedside. 
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Introduction  
This report provides an overview of the Health AI Deployment Symposium which took place in               
Toronto, Ontario on October 30th, 2019 as a joint collaboration between the Hospital for Sick               
Children (SickKids) and the Vector Institute (Vector). The Vector Institute is an independent,             
not-for-profit corporation dedicated to advancing artificial intelligence (AI) and excelling in           
machine and deep learning. Vector’s vision is to drive excellence and leadership in Canada’s              
knowledge, creation, and use of AI to foster economic growth and improve the lives of               
Canadians. SickKids Research Institute is one of the largest hospital-based research institutes            
in Canada, investing over $200 million annually to generate new scientific and clinical             
knowledge and working collaboratively to apply these new discoveries to improve the lives of              
children in Canada and around the world. By providing real-world examples of moving AI from               
the research lab to the clinic, this symposium provided Canadian healthcare leaders with the              
opportunity to learn from the “do’s and don’ts” of integrating machine learning (ML) into              
healthcare from American partner institutions. Speakers from the University of Michigan, Kaiser            
Permanente, Duke University, University of Pennsylvania, and Johns Hopkins University          
provided a diverse array of success stories and associated challenges.  

“Healthcare offers tremendous opportunities for AI to provide wide-ranging societal good and            
Ontario is uniquely positioned to take advantage,” said Dr. Garth Gibson, CEO and president of               
the Vector Institute. Vector has more than 30 affiliated members engaged in healthcare-related             
projects. Vector has also accelerated efforts in the health-AI field over the past 12 months               
through focusing on three foundational interconnected health workstreams: World-Class         
Research, Widespread Application, and Analysis-Ready Accessible Data. Through the         
Widespread Application workstream, Vector is supporting projects that aim to deploy and            
integrate AI-enabled healthcare practices into hospitals across the province.​9 Known as           
“Pathfinder Projects”, several were represented at our Deployment seminar via a moderated            
panel discussion. 

The AI in Medicine Initiative (AIM) at SickKids is developing strategies for moving AI from               
in-silico to ​in-patient pediatric care. The initiative has a goal to deliver data-driven and              
personalized paediatric health-care for pediatric patients by providing a platform and tools to             
facilitate the implementation of AI into clinical practice. AIM’s projects encompass machine         
learning, deep image recognition, natural language processing, virtual reality, robotics and           
more.  The initiative has an integrated partnership of leading researchers, computer scientists           
and clinicians at SickKids and works closely with Vector.  

Despite the world class research and the constant flood of innovative articles in the fields of AI                 
and ML in healthcare (see Figure 1), only a small percentage of articles mention concepts               
related to implementation or deployment, let alone lead to actualized tools. If the current              
translational success rate remains unchanged, funding agencies and the public may begin to             
grow disappointed at the lack of measurable progress in actual translational success stories.             
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There are a variety of domain-specific reasons explaining why delivering AI products which             
impact clinical care has proven difficult in healthcare.​10 Issues regarding algorithm evaluation,​11            
model maintenance, integration into EHR or hospitals’ data warehouses,​12 as well as privacy             
and fairness considerations​13 have all led to project development times which are longer than in               
other fields.  

Dr. Ronald Cohen, the CEO of SickKids, identified machine learning tools as equivalent to the               
iconic stethoscope in medicine in his opening remarks. The success of these tools will impact               
how physicians are trained in the future as well as the types of individuals who will want to                  
pursue a career in medicine. He congratulated Dr. Anna Goldenberg, the Varma Family Chair in               
Biomedical Informatics and Artificial Intelligence at SickKids, for pushing clinical practice to            
establish the necessary feedback loop for project development between computational and           
healthcare experts. Dr. Goldenberg identified four areas where additional investment will help            
expedite project development: streamlined access to data, appropriate ethical guidelines,          
systems designed with human-computer interaction (HCI) in the loop, and a clear pathway to              
deployment.  

In the remainder of this report we summarize the presentations of Jenna Wiens, Vincent Liu,               
Mark Sendak, Corey Chivers, Suchi Saria, and a group of presentations supported by Vector’s              
Pathfinders program in the order in which they were presented at the symposium. A question               
and answer summary has been provided at the bottom of the speaker section where relevant.               
The symposium’s agenda is available in the appendix. 

 
(a)                                 (b) 

 
Figure 1: ​Number of the papers published in PubMed with a reference to “machine learning” or                
“artificial intelligence” anywhere in the article (a), and the percentage of which have the term               
“deployment” or “implementation” in them (b). 
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1. Accurately Predicting Healthcare-Associated 
Infections at Scale  
Speaker: Jenna Wiens, University of Michigan  
Discussant: Anna Goldenberg, Vector Institute, SickKids Research Institute 
 
Dr. Jenna Wiens is a Morris Wellman Assistant Professor of Computer Science and Engineering              
(CSE) at the University of Michigan in Ann Arbor. She currently heads the Machine Learning for                
Data-Driven Decisions research group where she started translating ML into clinical practice.            
One of her group’s primary research foci has been using ML tools to be able to detect                 
hospital-acquired infections like ​Clostridium difficile Infection (CDI). These infections remain an           
ongoing clinical challenge to detect and cost the healthcare system billions of dollars leading to               
thousands of unnecessary deaths. By combining multiple types of data modalities, ML tools can              
provide clinicians with accurate pre-test probabilities of CDI thereby allowing clinicians to stratify             
patients into high-risk groups and expedite medical interventions​14​.  

Most algorithms used in the healthcare setting have an explicit (e.g., length of stay) or implicit                
(e.g., sepsis alert) time dimension. Dr. Wiens’ work has shown that when predicting an implicit               
time-dependent outcome like hospital mortality, structuring the predictions with respect to an            
outcome-independent reference point is essential​15​. For example, predicting whether a patient           
will experience an event in the next 72 hours from the time of admission satisfies this                
requirement as the time of admission is an independent reference point to the outcome of               
interest. In contrast, making the same prediction 72 hours before the event has happened does               
not satisfy this requirement as a prediction can never be indexed to a future time point in a                  
real-time setting. Furthermore, by using outcome-dependent timepoints the accuracy of the           
algorithm will appear inflated due to selection bias (e.g., the healthiest patients are discharged              
quickly).  

Transfer learning represents one of the most important applied research successes in ML --              
particularly in the fields of natural language processing and computer vision​16​. However            
transferring models from one hospital to another has been challenging due to a variety of strong                
hospital-centric features​17​. Dr. Wiens stressed the importance of leveraging hospital-specific          
features during model development and using ​generalizable approaches in contrast to           
generalizable models for multicentre studies. A “one-size-fits-all” model is unlikely to generalize            
across institutions due to challenges in mapping variables between hospitals, differences in            
EHR systems, hospital practices, and testing procedures. Hospital-specific CDI classifiers were           
therefore trained for the University of Michigan Hospital (UM) and the Massachusetts General             
Hospital (MGH)​18​. However pooling data across institutions can be useful for small hospitals             
where there is a paucity of data. 
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A consistent theme throughout multiple speakers presentations was that even though ML            
algorithms are often able to obtain good discriminatory ability, as measured by the AUROC,              
these algorithms often have a low Positive Predictive Value (PPV), which is the number of true                
positives divided by the number of predicted positives. In the case of the CDI tested at UM, the                  
0.82 AUROC translated to a 5.6% PPV at a fixed 95% sensitivity due to the relatively low                 
prevalence of CDI​18​. Whether a tool in which approximately 17 in every 18 alerts is a false                 
positive is valuable to the institution depends on the burden of alert fatigue, the necessity of                
having a high sensitivity, and the cost of intervention. In settings where the treatment is               
relatively cheap and noninvasive (e.g., probiotics) such a ratio may be acceptable. The current              
CDI algorithm tailored to UM has its own custom infrastructure with a web-service pull of EHR                
data occurring daily at 12am. The challenge of extracting data from Epic EHRs in real time was                 
another theme many speakers raised. For example there is often a delay between the Epic               
Chronicle and Clarity databases followed by a further delay between Clarity and a hospital’s              
research data warehouse. 

The timeline for developing a CDI risk stratification tool took more than three years. First,               
training must occur on retrospective data over a long enough time period. Second, a silent               
period must be initiated to ensure that ​in-silico performance approximates real-time accuracy            
and algorithmic bias can be assessed (e.g. differential model performance between ethnicities).            
Third, a hospital-wide study will be carried out to assess the overall success of the risk tool.                 
While lessons learned from past projects can speed up time to deployment and             
implementation, having a clinical champion at each institution was identified as one of the most               
important accelerators. An expedited process of one year for training and one year for validation               
was suggested as the lower bound for a project of this nature.  
 
Questions (​Anna Goldenberg and participants​) and Answers (​Jenna Wiens​) 
 
Q1​. How and why did you decide to work on CDI? 

Work started as a graduate student and was encouraged by clinicians and hospital             
leadership to continue to pursue this problem.  

Q​2. How does one assess what a sufficient level of performance is? 
It will depend on the problem and the clinical use case/intervention. For example a 5%               
PPV will not work for assigning private rooms in a hospital, but may work for a condition                 
with a non-invasive treatment. 

Q3​. What team do you have in place to carry out model development and assessment? 
Students, clinical collaborators working on infectious disease problems, as well as           
experts in IT, health implementation and study design.  

Q4​. How is your tool integrated into Epic? 
The tool does not currently push alerts through Epic. Instead, we envision it sending              
messages to a subset (e.g., infection prevention team) rather than all physicians. 

Q5​. What were the lessons learned from a multisite project? 
A clinical champion at each institution is needed to be able to push forward progress and                
bring down barriers. 
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Q6​. What is the minimum amount of data you need to train a model, and can transfer learning                  
help? 

It depends. In settings with seasonal trends, a minimum of one year of data (to capture                
seasonal effects) followed by one year of validation is advisable. Transfer learning may             
reduce data requirements for small hospitals.  

Q7​. Did you check for bias in your models? 
We checked the model inputs for biases in race and sex. 

2. Identifying Health-System Level Opportunities for 
Predictive Model Deployment 
Speaker: Vincent Liu, Kaiser Permanente  
Discussant: Muhammad Mamdani, St. Michael’s Hospital  
 
Dr. Vincent Liu is a Research Scientist with the Northern California Kaiser Permanente Division              
of Research with extensive expertise in medical informatics, data science, and acute severe             
illnesses like sepsis. He is also the Regional Director of Hospital Advanced Analytics leading a               
multidisciplinary team embedding real-time predictive models into clinical practice. Kaiser          
Permanente Northern California (KPNC) is an integrated healthcare delivery system with 21            
hospitals and more than 200 medical clinics. This scale of healthcare provision allows KPNC to               
act as a “data science lab in the wild” with ML tools able to be rolled out across all hospital sites.                     
Algorithmic evaluation is expedited through the organizations large number of stakeholders           
including more than 4 million healthcare members, 9 thousand physicians, and 22 thousand             
nurses. KP has been on the leading edge of medical informatics helping to establish computer               
databases for healthcare​19​ as well as personalized medicine​20​. 

Bringing machine learning tools to life requires two components: data science and delivery             
science. While the ingredients of data science in healthcare are well understood (researchers,             
model builders, and IT experts), the delivery science piece receives less attention and is often               
more complicated requiring operational leadership and clinician support. Dr. Liu identified the            
life cycle of a predictive model of having five stages: prioritization, assessment, development,             
deployment, and evaluation -- although the cycle does not often proceed via a linear path. 

The identification of high-value targets that have modifiable outcomes with hospital leadership            
helps to prioritize ML tasks. Assessing how well similar tools have performed in other hospitals,               
what the expected resources needed to bring a project to fruition would be, and whether it                
makes sense to build the tool from scratch or purchase it, can help identify the highest-value                
and feasible projects. While the pre-test probability for a successful medical intervention            
remains low for many medical devices and pharmaceuticals​21​, it is unclear whether the same              
holds true for ML tools evaluated under an RCT framework. Future research will be critical to                
help determine whether algorithmic ​in-silico success translates into clinical impact across a wide             
variety of predictive models. Project development requires identifying the details of technical            
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implementation as well as how the model will be calibrated and internally validated. Alignment              
with the hospital’s existing work-flow and the design of the end-user interface are critical              
questions to be addressed by the deployment team. Lastly, evaluation needs to be carried out               
to ensure that the expected outcomes are being achieved and that a system is in place for                 
ongoing model maintenance. 

After a tool has undergone statistical development targeting a specific prediction problem,            
health system deployment requires alignment across two fronts to ensure a seamless            
“technical-operational handoff”. What platform is needed (technical) and where will it fit into             
workflows (operational)? What is model performance (technical) and how will end-users interact            
with risk scores (operational)? How will alerts be sent (technical) and how is reliability ensured               
(operational)? What is the performance during the silent period (technical) and is this model              
making a difference on the ground (operational)? The technical “go-live” necessarily occurs            
before the operational “go-live” as sufficient data needs to be collected before operational             
questions can be addressed. Having a world-class delivery science team is critical to             
addressing all of these challenges. 

One of KPNC’s earliest models was an early warning score to detect inpatient deterioration​22​.              
Their tool is completely integrated into Epic with all presentations and calculations of scores              
staying inside the system. The risk scores are calculated in a high-throughput manner and are               
first delivered to a virtual triage team before alerts are sent to frontline clinicians. These nurses                
apply human evaluation to the scores and talk with the rapid response teams who then initiate                
the local workflows. The rollout of this algorithm showed decreased inpatient mortality, greater             
“goals of care” discussion, and a reduction in risk-adjusted readmission rates (forthcoming            
publication). 

The research team at KPNC has turned their attention to a variety of other healthcare problems                
amenable to ML support including diabetes mellitus treatment related hypoglycemia​23​, mental           
health risks including suicide attempts and deaths​24​, labour and delivery deterioration​25​, incident            
HIV infection ​26​, and incident sepsis hospitalization​27​. Projects around mental health and HIV             
infections have additional considerations and sensitivities given the vulnerable populations they           
affect. The KPNC research team categorizes project development along a gradient ranging from             
an initial “scientific” exploration to an intermediate “technical” stage, and then lastly to the              
“operational” level. This provides a common linguistic framework to understand the development            
cycle. To help operational leadership make choices around the risk alert threshold, a trade-off              
between the detection ratio (inverse PPV) and sensitivity are provided showing the average             
number of alerts a tool will send each day to specific end-users.  

Most data science teams try to develop an algorithm which targets the patient of interest (e.g.                
which patients have sepsis), but changing the target towards a resourcing or workflow issues              
can sometimes be more effective. If 100 patients need a service but there are only 20 units                 
available to provide that service, then an effective algorithm could simply focus on finding the 20                
patients who need the service the most. In contrast, if 100 patients are receiving a service but                 
only 80 need it based on an algorithm, then the algorithm could reduce service delivery for the                 
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potentially ineffective subgroup. For workflows that are highly variable, ML can be used to              
standardize aspects of treatment delivery. When it is appropriate to focus directly on the patient,               
the algorithm should provide personalized treatment recommendations at a specific point in their             
disease trajectory. The performance characteristics of the model needed for these three targets             
(resources, workflows, and patients) will differ. Ideal predictive models need to be            
contextualized in a clinical workflow to help augment or enhance a clinician’s decisions rather              
than to only try to replace it.  

Due to time constraints only a single question was asked to Dr. Liu around the parallels                
between the environments seen in lab services and those of healthcare analytics. Data science              
teams have a lot to learn from lab services especially around the establishment of rigorous               
measures to ensure reliability and standardized processes. As the number of models being             
used in a system grows, a holistic approach is needed to assess performance in the same way                 
that multiple measurements of creatinine, lactate, and troponin are critical care clinical practice,             
but do not dictate clinical action on their own.  
 

3. Integrating Deep Learning into Routine Clinical 
Care to Rapidly Detect and Treat Sepsis  
Speaker: Mark Sendak, Duke Institute for Health Innovation 
Discussant: Amelia Hoyt, The Hospital for Sick Children 
 
Dr. Mark Sendak is the Population Health & Data Science Lead at the Duke Institute for Health                 
Innovation (DIHI) where he manages an interdisciplinary team of data scientists, clinicians, and             
ML experts to solve clinical problems. DIHI uses a top-down/bottom-up approach for sourcing             
innovation and has a direct line of communication with senior health system leadership. Value              
creation at DIHI occurs across the spectrum of care including inpatient innovations, transition             
settings, and gaps-in-existing-care. The goal of machine learning tools is help shift the             
production possibility frontier to deliver more high quality and low cost services.  

One of DIHI’s most successful Early Detection and Deterioration projects is Sepsis Watch which              
was brought to fruition after 2.5 years and included a variety of stakeholders​28​. Sepsis Watch ​is                
also one of the few hospital-based ML systems that has been registered as a clinical trial​29​. One                 
common challenge in any data-driven sepsis project is defining the label. In addition to the               
existing ​Systemic inflammatory response syndrome (​SIRS) criteria, other characteristics         
including mortality and morbidity also helped to guide label assignment. Understanding where            
(inpatient vs emergency department) and when (development relative to admission time) sepsis            
occurs helped to guide model development​30​. While the PPV for the Sepsis Watch algorithm              
was impressive compared to similar tools, a custom workflow was nevertheless implemented as             
the Epic Best practices advisory notifications were largely being ignored by physicians. Instead             
a remote team was provided with the sepsis alerts and they decided whether or not to reach out                  

                 ​10 

https://paperpile.com/c/mZP1iz/O5Wj6
https://paperpile.com/c/mZP1iz/KgTRP
https://paperpile.com/c/mZP1iz/3bkIx


Whitepaper: Implementing AI in healthcare 

to the treatment team on the ground. This closely resembles the strategy used by KPNC’s               
inpatient deterioration tool discussed above. However an IT solution for Sepsis Watch was built              
outside of Epic (similar to Dr. Wien’s CDI tool) in order to have real-time data extraction and                 
predictions as well as a custom user interface (UI). 

The UI for Sepsis Watch has three stages: triaging, monitoring, and treatment. The remote              
assessment team is first alerted at the triage stage. Monitoring tracks updates about whether a               
nurse or physician has been contacted. Finally the treatment stage allows the application to              
track which tests and treatments have been administered to the patient. Tools like Sepsis Watch               
require ongoing maintenance and engagement even after deployment. Sending out weekly           
compliance reports as well as handling natural perturbations to data fields are required to              
ensure trust is established among clinicians and the model remains relevant and valid. Duke              
also has a reporting group that works on all quality-improvement projects. For example, doctors              
are provided with the successes and failures of the patients they took care of.  

At the beginning of the symposium Dr. Goldenberg identified appropriate ethical guidelines in             
healthcare AI as an important framework which needs to be further developed. Dr. Sendak              
echoed this concern and highlighted four types of ethical challenges ML will surface in              
healthcare: patient awareness and consent, clinician awareness and consent, retrospective          
bias, and prospective bias. In order to address each of these issues, there should be a                
discussion amongst stakeholders and experts around establishing general frameworks. DIHI          
has a similar view to KP’s lifecycle approach for model development by separating these              
projects into three phases. In Phase 1 there is a problem assessment where relevant workflows               
can be hypothesized. In Phase 2, the detailed design of both the model architecture and the                
workflow is developed. Lastly, in Phase 3 implementation and evaluation is carried out and              
future governance structures are put in place.  

Various lessons from the business world can be used to help provide better language and               
methods for strategic development in our field. First, change management frameworks can be             
used to improve the organization as well as the technology​6​. By referring to these technologies               
as ​augmented ​rather than ​artificial ​intelligence, it helps to make clear that these tools are               
designed to assist clinicians. By describing algorithms as being “deployed” stakeholders may            
come to see these systems as autonomous and decontextualized whereas “integrating” tools            
puts the technology within existing norms and practices​7​. DIHI has existed since 2012 and in the                
first few years they were unable to develop and deploy ML projects in the 12-15 month                
timeframe that pilots were funded for. The primary roadblock that was overcome was having              
access to clean and high quality data in a timely fashion.  
 
Questions (​Amelia Hoyt and participants​) and Answers (​Mark Sendak​) 
Q1​. For organizations at the start of this journey, what are your lessons learned for ensuring                
engagement is effective and sustained? 

First, frontline clinical engagement is needed to help to surface the problems that can be               
addressed by ML and to help champion progress. Second, operational engagement           
needs to have someone be responsible for curating and funding the project after it is               
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deployed. Third, IT needs to be involved from the start to determine what can be done                
within and outside of Epic as well as maintenance. 

Q2​. How have you trained your team members and the operational side to better understand               
machine learning?  

Programs were built that directly taught medical students coding and strategies for            
evaluating technologies. For individuals with technical expertise it meant getting them           
talking to the clinical side. 

Q3​. How important is interpretability? 
The dominant narrative in healthcare is that for high-stakes decisions interpretability is            
necessary but over the multiple years that Dr. Sendak’s team has been operating there              
have been almost no bottom-up requests for model interpretability in the sense of             
variable importance. Rather, stakeholders have requested “context” when receiving         
model predictions. This is more broadly related to building trust, in which interpretability             
per se is not necessary​31​. For tools like Sepsis Watch, front-line users want to see vital                
signs and labs and how the patient has evolved over time.  

Q4​. What are the lessons learned when building your own data pipelines? 
Some models can be implemented directly into Epic when internal data representations            
are sufficient. However for tools like Sepsis Watch custom infrastructure needed to be             
built. Ultimately it depends on how complicated the data extraction is and how often              
models need to be updated. 
 

4. The Right Solution to the Wrong Problem? 
Lessons from Deploying an ML-based Early Warning 
System 
Speaker: Corey Chivers, University of Pennsylvania  
Discussant: Devin Singh, The Hospital for Sick Children 
 
Dr. Corey Chivers is a Senior Data Scientist at Penn Medicine where he works with clinicians to                 
take predictive healthcare solutions from the idea and experimentation phase to scaled            
production implementations. The data science branch at Penn Medicine was established in            
2014 and one of its earliest projects was an ML-based early warning system (EWS) for sepsis to                 
reduce mortality. This system was one of the largest ML-based EWS which was deployed and               
prospectively evaluated across two large academic hospitals ​32–34​. Prior to full-blown sepsis            
presentation or a positive blood culture drawn (ie. Lactate > 2.2 or BPS <90), there exists a                 
clinical state that Dr. Chivers refers as preclinical detectability which patients transition into from              
an original stable state. A supervised learning model was trained to detect patients who would               
go on to develop sepsis in this preclinical detectability state, with outright sepsis cases              
excluded. The ML model for the EWS was a decision tree based algorithm which was trained on                 
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various features extracted from observations (eg. labs and test results) within a 12 hour window               
prior to sepsis onset.  

As a part of the model development and also in an attempt to make the model re-usable, they                  
created a data science pipeline, called ​Penn Signals​, which infuses and integrates multi-modal             
EHR data from different sources and converts them into time-series signals. The data science              
team could therefore get access to both batch and realtime data for their ML model prototyping                
and deployment. After a design period and technical troubleshooting achieved reasonable           
results (PPV of almost 30%), the team proceeded to two phases of validations: 1) a 6 month                 
silent period and 2) a 6 month alert period. The only difference between the two phases was                 
that no alert was sent for a silent period. The alerts were sent to the care team, nursing                  
coordinator, and providers in the form of a secure text message. They were also provided with a                 
context plot of the vital signs. To further investigate the clinical utility of the model, the team                 
compared changes in clinical outcomes between silent and alert phases and, unfortunately,            
there was no statistically significant difference except for the time to ICU admission.  

This result was all the more surprising because the model performance seemed to be high               
during the silent trial. The team therefore surveyed clinicians and nurses to assess their              
perceptions of the utility and impact of the EWS 2.0 on patient care. The survey results                
indicated that users, in general, were not supportive of the model or impressed with its benefits.                
There are three reasons that Corey and his team believe the system was not improving patients                
care. First, the dataset was imbalanced as the number of patients who developed sepsis              
following admission but were not diagnosed at the time of admission was small. Second, the               
majority of patients that were becoming septic at the time of the alerts were already suspected                
of being so by the care team. Lastly, there was no intervention that was consistently carried out                 
for patients at the ‘pre-sepsis’ state when alerts were sent. 

The evidence indicated that choosing the set of right problems to address is an important piece                
in moving AI for health from research to deployment. Dr. Chivers and his colleagues, therefore,               
created a very short questionnaire called the “Predictive Healthcare Madlib” that help them             
remain focused on right predictive solutions for the right problem that can result in an improved                
care plan:  
As a [​decision maker​], If I knew [​information​], I would do [​intervention​], to improve [​measurable               
outcome​] 

Two ongoing projects were launched as a result of the outcome of the Predictive Healthcare               
Madlib: (1) to detect individuals who may benefit from palliative care, and (2) to identify patients                
ready for transition from ventilator to spontaneous breathing. Both projects are in the preliminary              
stage and their successful integration into the hospital setting would result in a clinical care               
improvement. Dr. Chivers also raised the issue of how to formulate the model’s loss function to                
account for the cost of interventions and errors in event detection. This information can in turn                
be used to determine what are the satisficing metrics needed for model usefulness.  
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It is important for the community to understand the problems they are trying to solve and                
frameworks such as the Healthcare Madlib can help clarify roles, actions, and expected             
outcomes. It is also useful to leverage decision theory rules prior to building the model in order                 
to understand the ML performance that would be required in order to expect positive outcomes               
over alternatives (i.e., status quo, treat all, treat none). The talk reinforced the view that the                
successful integration of ML models into healthcare is as, if not more, challenging than the task                
of developing these models. 
 
Questions (​Devin Singh and participants​) and Answers (Corey Chivers) 
Q1. ​Is there any particular lesson that you learned from your past experiences that you would                
like to share with people who are at an early stage of ML model development in health with                  
respect to working with retrospective data? And what would you do differently if you go back to                 
the beginning of the project? 

Real-time data is very different from research data stored in the hospital data             
warehouses. Getting data and making a decision in real-time requires incorporating           
additional latency for feature extraction and inference as well as online noise filtering and              
unit standardization. Unlike offline data, real-time data comes with different timestamps.           
These are the essential factors that should be taken into account by the project team               
right at the beginning and prior to any ML model development. 

Q2​. How did the team choose to use text message nudges as opposed to a phone call or any                   
other alert within Epic Best Practice alerts? 

Given the short timeline of the project, text messages were the quickest and most              
feasible way to deliver outcomes and alerts to clinicians’ hands. 

Q4. How do differential costs between false positives and negatives affect the applicability of the               
decision theory process the team is using in order to have a more structured decision? 

Based on decision theory framework, we are looking at a population level where all              
individuals are grouped and treated together. Although it seems a reasonable approach            
to pursue, it might fail in capturing variation among the population. But it’s important to               
note that it is a joint human-machine collaboration and the final decision will be made by                
clinicians. So, hopefully, they would be able to handle those diverse set of cases in the                
outcome on the confusion matrix. However, for a fully automated decision making which             
results in high risk intervention, there should be additional considerations in place            
around the distribution of the outcome.  

Q5. Could you explain more about the methodology your team is approaching in sampling and               
modeling of the cost-benefit trade-offs and which expertise are required?  

There are already well known methods with respect to the implementation of expected             
utility maximization. What is less established is how to define and value different terms              
(e.g., cost of interventions). In our project, we always use a cost function to formalize the                
objectives and a stakeholder-derived framework. From this, we can start to ask “In what              
range would the unknown quantities need to be in order for us to choose the model of                 
some alternative for decision making?”  

Q6​. With regards to the outcome of the model, did you look into clinicians’ experiences in using                 
the tool?  
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There was only a provider survey that was primarily designed to ask clinicians for their               
perception of the tool. However, it is a great idea to have a tool or survey that asks about                   
the usefulness of the alert as well as user experience. 

5. Takeaways from 9 years of collaborations across 
more than 10 service lines 
Speaker: Suchi Saria, Johns Hopkins University 
Discussant: Mjaye Mazwi, The Hospital for Sick Children 
 
Dr. Suchi Saria is the John C. Malone assistant professor of computer science at the Whiting                
School of Engineering, health system informatics at the Johns Hopkins University School of             
Medicine, and health policy and management at the Bloomberg School of Public Health. Her              
research work in healthcare AI spans a wide variety of projects, and she has done important                
work to demonstrate how diverse signals can be integrated in ML systems to make early               
detection for sepsis possible ​35​.  

Dr. Saria illustrated the passage from science to delivery as a tunnel made up of three main                 
zones: ​development​, launching and ​business​. The ​development ​zone is where most           
researchers and scientists spend the majority of their energy, time, and funds. Ideation, model              
development and evaluation on retrospective data, along with scientific publications are all            
conducted in this zone. Researchers who have positive findings and media attention will begin              
to work in the ​development zone as part of career development. As you move down the tunnel                 
and get closer to its neck, you will reach the ​launching zone where the ML model is transferred                  
from the virtual to the real such as designing the workflow, educating the users, estimating the                
infrastructure, and integration into a real healthcare setting. Dr. Saria calls this stage a “dead               
zone” as the researchers and developers might give up if they see the performance of the                
model decreasing in a natural setting with real-time data. However, if you manage to pass by                
this zone the tunnel will widen out and you can reach the survival zone which is the ​business                  
zone. It is a less interesting zone for researchers and scientists but could end up being a great                  
success in terms of the return on both private and public investment. This zone requires               
reporting results, continual change management, monitoring, maintenance, and model         
improvement. Dr. Saria has been working on the computational-detection of sepsis for almost 7              
years now. One of her models was deployed in the background in early 2017 and integrated in                 
an Epic workflow. Her team spent almost 18 month to get to the point where clinicians were fully                  
satisfied with the tool. Dr. Saria’s team for productionizing the sepsis prediction ML model              
included herself and nine other individuals with various skill sets ranging from data science to               
devOps and user design engineers.  

There are different factors that should be taken into consideration in moving from development              
to integration of ML models in health settings. These factors can be classified into two main                
categories: clinical and workflow. Clinical considerations that need to be taken into account             
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include the frequency of the underlying event, the importance of the precision for the prediction               
problem, the harms of missing a patient, and the burden of over-treatment. Workflow             
considerations are made up identifying the user (patients vs. care providers), adoption            
strategies, and hedging financial risks. In addition to the above considerations, teams should             
also ensure the accuracy of their models over time and across settings. 

Dr. Saria also raised the concern regarding the robustness and transformability of ML models              
against changes in setting and time once they are deployed to production. The example of               
adversarial inputs was given as a warning to how fragile some ML systems can be​36​. Another                
example provided was a deep learning model for detecting pneumonia in chest radiographs             
where in 3 out of 5 natural comparisons, performance on chest X-rays from outside hospitals               
was significantly lower than the original hospital system​37​. In a similar study, ​Dr. Saria’s team               
also observed performance degradation for a model trained on data from 2011-2013 and tested              
on 2014​38​. ​Dataset and/or covariate shifts are common problems in predictive modeling that             
occur in most practical applications.​38–40 Training data that have structural biases will reduce the              
effectiveness of predictive models and pose an ethical challenge, especially healthcare, where            
decisions can be life or death ones. Shifts in the data such as provider practices should                
therefore be corrected where possible.​38,40–43 

As ML projects move from small scale research projects to large scale clinical deployment, a               
large amount of infrastructure is required to support its production. Additional steps to avoid              
model staleness are required with a feedback loop between monitoring systems and domain             
experts in place. The actual infrastructure requirements needed to scale an operation remains             
an ongoing area of work and research. 
 
Questions ​(Mjaye Mazwi and participants) and ​Answers ​(Suchi Saria) 
Q1​. How do you imagine that the incentive structure could be changed in order to get the                 
effective model to the point of care given that it is an ecosystem level intervention in the                 
provision of healthcare? Applying ML in healthcare requires the ability to modify a workflow,              
understand use cases, adapt to changing conditions, and develop custom infrastructures. 

In order to produce an effective model, there should be a team of people with diverse                
sets of knowledge and expertise including human factor engineers, implementation          
scientists, data engineers, people familiar with clinical transformation, and EHR          
workflow. Building and sustaining an effective model requires a central institutional           
mandate. Projects which focus solely on delivering “innovation” will not be able to sustain              
themselves past launching the project. Successful AI products in the market have in             
place significant resources to both productionizing and prototyping. In academia, this           
could be achieved through collaboration with industry partners.  

Q2​. In your 9 years of experience across different institutions, what is the biggest barrier? 
The biggest barrier is talent in terms of hiring, maintaining, and sustaining it. A good               
team knows how to work together and understands all of the pieces in the pipeline. Dr.                
Liu agreed with Dr. Saria’s in regards to having a central mandate as resources need to                
be pulled across institutions to run a model. To have success with multiple models, a               
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team needs to be able to speak the same language and understand how an iterative               
development process works. 

Q3​. What is the critical success factor for a new organization needs before embarking on a data                 
science journey? 

Having a task force, governance council, and infrastructure team. As well as being             
aware of the challenges in the different phases a project takes on. Implementation and              
deployment takes a longer time than prototyping and requires patience and           
maintenance.  

 

6. Pathfinder Projects 
Alison Paprica, VP of health strategy partnership at Vector institute, introduced Pathfinder            
Projects as small-scale efforts designed to take research that is nearly ready to go into clinical                
practice. With technical and resource support from the Vector Institute, they each bring together              
a multidisciplinary research team to tackle an important healthcare problem or opportunity using             
ML and AI more broadly. Each project was chosen for its potential to help identify a “path”                 
through which world-class ML research can be translated into widespread benefits for patients.  

Medly Project - Application to Remotely Monitor patients with 
congestive Heart Failure 
Dr. Heather Ross, a cardiologist at the Peter Munk Cardiac Centre (PMCC), Professor of              
Medicine at the University of Toronto, and Director of the Cardiac Transplant Program at              
Toronto General Hospital opened her talk with a statistic on Heart Failure (HF) in Canada.               
About one million Canadians (1 in 5) over the age of 40 are diagnosed with HF and half of                   
Canadians have either experienced heart failure themselves or as a care-giver. The overall cost              
in terms of days in hospital is tremendous (1.4 million days with the average patient spending 26                 
days in hospital) as well as the financial cost to the Canadian healthcare system ($2.3 billion).                
Ensuring optimal care to this growing population of patients is one of the most vexing               
challenges facing healthcare professionals working in cardiovascular medicine. In Canada, HF           
patients typically see their cardiologists twice per year. Between these visits, doctors remain             
unaware whether symptoms are worsening and patients are left guessing about the health of              
their heart. Medly is a digital tool that easily allows patients to measure their weight, blood                
pressure and heart rate and sends this information electronically to a nurse who carefully              
monitors their care. It seeks to cover patients in between their visits and provide them with                
self-care and coordinated clinical support, all without leaving their homes. Medly runs this data              
through a clinically-validated algorithm which provides instant feedback to patients and their            
clinicians on a daily basis. The Medly system is part of the PMCC's digital cardiovascular health                
platform (DCHP) and has been integrated into the centre's care for heart failure patients. The               
Medly app was co-developed by Dr. Heather Ross (PMCC) and Dr. Joseph Cafazzo’s team, a               
biomedical engineer, researcher, and educator at eHealth Innovation, a partner of University            
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Health Network. One of the issues with the current Medly app is that there are many false                 
positives. The team has now established an extension to the Medly app, called Medly AI, which                
will be used to explore how ML can help to reduce the frequency of false positives without                 
sacrificing patient safety. Medly AI will use different data features (from genomics to EHR) from               
DCHP along with daily self-measurements which feed into an AI engine.  

Dr. Bo Wang, the Lead Scientist of the Artificial Intelligence Team for Peter Munk Cardiac               
Centre at University Health Network and also a Faculty member at Vector Institute explained              
briefly about the Machine Learning component of the project. He pointed out two approaches              
that will be used in Medly AI as follows: 1) a decision tree binary classifier (Random Forest), and                  
2) recurrent neural network deep learning model.  

Rule-based Medly currently has a Health Canada (HC) class 2 status under the Medical Device               
Quality Management System. And unlike other telemonitoring devices, where one nurse is            
assigned to 40-60 patients, Medly enables that single nurse to manage more than 350 patients               
using the Medly app. Medly is also part of a QI project to reduce HF-caused hospitalization at                 
Sunnybrook, where it has been shown to reduce hospitalizations. Dr. Ross added that the              
number of patients with HF is expected to increase by about 25 percent over the next 20 years.                  
Hence, novel mechanisms are needed to treat patients. Using mHealth to treat HF will enlist the                
help of the largest healthcare workforce.  

Tick Identification to combat Lyme Disease 
Vanessa Allan, Chief Medical Microbiology at Public Health Ontario (PHO) explained about the             
rapid increase of Lyme disease in Ontario and Canada due to tick bites. Blacklegged ticks are                
the only ticks in Ontario known to carry ​B. burgdorferi​, the bacteria that causes Lyme disease.                
While not all blacklegged ticks carry ​B. burgdorferi​, a bite from one is of more concern than a                  
bite from other tick species which do not carry the bacteria. Lyme disease can be prevented if                 
antibiotics are given within 72 hours of a tick bite in an area of disease activity. Because of the                   
lack of expertise in tick identification in Ontario, the ability to detect the tick type within 72 hours                  
has been limited. The current process is that an individual removes the tick from their body, puts                 
it in a plastic bag, goes to a clinician, who sends it to a PHO lab, and then finds out the results a                       
month later. Ideally the tick should be identified by a clinician, and the lab submission is                
primarily designed for surveillance purposes. However, clinicians do not have required skills to             
detect ticks. Part of Dr. Allen’s project aim is to build an AI model that will empower the public to                    
take care of their health within a window where they can get effective treatment. There is an                 
interdisciplinary team of physicians, microbiologists, laboratory technologists, engineers,        
scientists, entomologists, and public health specialists involved. The team has currently           
developed a computer vision model to differentiate between the two common tick species             
normally found in Ontario. The model has been trained on an image bank that has 13 thousand                 
tick images taken from PHO labs. The test set accuracy of the model is greater than 90%. As a                   
first deliverable, the team has already developed a web app that professionals at PHO will use                
to identify whether or not a tick is a blacklegged tick. The long-term goal is to create an app that                    
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anyone can use to simply take a photo of a tick. Once the app identifies the species, it will                   
provide advice. In addition to empowering the public in management following tick bite, the app               
will improve surveillance of ticks and their geographic distribution which results in laboratory             
efficiency.  
 

Early Warning System for General Internal Medicine 
Dr. Amol Verma, internist physician and clinical scientist mentioned that at St. Michael's             
Hospital, a 450 bed health centre, an average of 8% of General Internal Medicine (GIM)               
in-patients will die or be transferred to Intensive Care (ICU) at the hospital. Unrecognized              
deterioration is the most common root cause of unplanned ICU transfer. An EWS may therefore               
help for early detection of deterioration and interventions which is currently deployed in the              
majority of hospitals in the UK (>75%). The challenge with existing EWS tolls is that they                
recognize but to do predict deterioration and suffer from high false alarm rates. The team set out                 
to build CHARTwatch, an EWS based on AI, to reduce mortality and improve the quality of care                 
in GIM inpatients. The model was built using approximately 10 years of historical data including               
more than 800 data elements from the hospital’s EHR. The dataset included 20 thousand              
historical encounters where each encounter was segmented into 6-hour time intervals, and the             
model was built to make a prediction at the end of each time interval. An out-of-time validation                 
approach was used to evaluate the performance of the model where the training, validation, and               
test sets included encounters from 2011 to 2017, 2018, and 2019, respectively. As mentioned              
above, the performance of CHARTWatch was tested out-of-time on 4-months of held-out data             
from May-Aug 2019 and compared with NEWS and clinicians. The model was compared to              
almost 4K daily realtime predictions made by patient nurses and attending physicians. All             
clinicians’ predictions were less sensitive than either NEWS or CHARTWatch. NEWS has the             
lowest PPV while MDs have slightly higher PPV than CHARTWatch. However CHARTWatch            
had the highest AUROC. The time interval between the alarm and actual event is about 1.5                
days, which provides a good amount of advanced notice to make interventions. This is a               
multi-stakeholder project including a team of local full-time data scientists, researchers based at             
the University of Toronto and Vector Institute, clinical implementation committee, evaluation           
committee, patients’ advisors and out of that group, there is an implementation team as they are                
moving more toward deployment.  

This project is a huge team effort and the team built a care pathway in order to improve the                   
quality of care for patients through reducing non-palliative death in hospital as well as reducing               
time-to-palliative and -intensive care consults. Dr. Varma pointed out that the model predictions             
will go to physicians and nurses from GIM as well as the palliative care team. Right upon                 
successful development of the model with promising results, the team is in transition to a silent                
period phase where the plan is to revisit with physicians and inquire what they would do                
differently or how they would intervene if they were given a prompt prediction on high risk                
patients in a hope that it would improve current care pathway. Following a silent period phase,                
the team was interested in running an RCT but this would require approximately 25K patients,               
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which would require almost 5 years. The team is therefore considering two alternative             
approaches such as running a cohort study and/or time-series analysis to evaluate the EWS              
impact.  

Coral Review Project - Computer vision System to support 
Diagnostic Imaging  
Dr. Antonio Sze-To is a postdoctoral fellow at the University of Waterloo and a member of                
Knowledge Inference in Medical Image Analysis (Kimia Lab) led by Dr. H.R. Tizhoosh, a Faculty               
Affiliate at the Vector Institute.  
 
In this talk Dr. Sze-To explained how their AI tool, Insignio, detects pneumothorax in X-Ray               
images. Their model was developed with the collaboration of University Health Network (UHN)             
and will be integrated within Coral Review. Coral Review, a software solution developed at              
UHN, is a peer learning tool used by clinicians in diagnostic imaging to support the continuous                
quality improvement of radiology practice. Coral Review has been implemented at a number of              
hospitals across Ontario and enables an anonymous peer review of a medical imaging             
diagnosis, as well as image quality. 
 
Pneumothorax is a life-threatening emergency that is very likely to be detected from X-ray              
images. Training radiologists is expensive and time-consuming with current imaging volumes           
leading to delays in X-ray reviews. An automated method of prioritizing X-rays with             
pneumothorax may reduce time to treatment. To bring more regularity and efficiency into the              
system, Antonio brought up an image search solution that scans through thousands of existing              
medical images (i.e., X-rays) for ones similar to a patient’s and recommend a diagnosis to the                
attending physician through majority voting. Insignio is composed of two parts: a deep             
convolutional neural network that learns features of images, and an image search where the              
model retrieves the most similar training images to a given image. So far the team has                
evaluated the model on publicly available chest X-ray images ​44–46 through K-fold cross             
validation with promising results (AUROC > 74%). After research ethics board approval, the             
team will integrate Insignio within Coral review to find similar looking images from past cases               
and offer suggested diagnoses -- while still leaving the final decision to doctors. And as a future                 
direction for this study, Insignio can be easily adjusted for other chest diagnostics in addition to                
Pneumothorax.  

Artemis Project - Predictive Analysis for Newborns in ICU 
Dr. Carolyn McGregor AM is the Research Excellence Chair in Health Informatics and a              
two-time Canada Research Chair based at Ontario Tech University, Canada. The Artemis            
Project is a predictive analytics platform that applies ML to help physicians with the critical care                
of newborns. Dr. McGregor started her talk with a real example where a preterm infant in                
Australia was suspected with sepsis on day 10 of life and antibiotics were recommended.              
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However, unfortunately, 14 hours later, the baby died. Dr. McGregor’s team observed a similar              
scenario in a hospital in Ontario where the baby survived and they were able to capture all the                  
bedside signals. Variations in indicators like heart rate or breathing are signs of infections in               
infants. Should such signs occur, Artemis will alert physicians who will interpret the data and               
decide next steps. Artemis is being developed in partnership with McMaster Children’s Hospital             
and Southlake Regional Health Centre. Once fully implemented, the Artemis system will monitor             
infants in neonatal intensive care units (NICU)s, alerting clinicians when sepsis develops before             
it would otherwise be clinically apparent. Ultimately, Artemis aims to reduce mortality, morbidity             
and average length of stay in NICUs. 

Artemis was trained on retrospective heart rate and respiration data collected at a 30-second              
sampling rate from 1150 infants. The initial Artemis deployment was for 500 infants for real time                
data capture and prediction. Next, Artemis was deployed to capture data over 2 years from 80                
bedspaces in the USA for 250 infants. The system is currently being deployed in two hospitals                
in Ontario (Southlake Regional Health Centre in Newmarket and the NICU at McMaster             
Children’s Hospital in Hamilton) for real-time data streaming from over 400 infants. Artemis is              
running continuously in the background and makes predictions in the silent period. The team              
has deployed a cloud infrastructure in the Centre for Advanced Computing at Queen's             
University for storing and analyzing data in realtime. The infrastructure is built to work in               
real-time at scale.  

At the end of her talk, Dr. McGregor shared the lessons she and her team learned during                 
deployment. She insisted on the fact that deployment is not just about the model and there are                 
many other elements that are playing an important role. Factors such as beginning with the end                
goal in mind, real-time data collection from remote bedside monitors, feature extraction, Al and              
analytics, as well as how and when to communicate with clinicians in terms of predictions should                
be considered. Once Artemis is fully implemented, Dr. McGregor is planning for the tool to be                
expanded beyond sepsis detection. The team is also deploying pilot studies into hospitals in              
India, Australia and South Africa. 
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Appendix 
 

A1. Health AI Deployment Symposium Agenda Agenda  

8:30 AM - Breakfast and Registration 

9:30 AM - Welcome and Introduction 

Garth Gibson, President and CEO, Vector Institute 

Ronald Cohn, President and CEO, The Hospital for Sick Children 

Anna Goldenberg, Associate Research Director, Health, Vector Institute and Senior Scientist,           
SickKids Research Institute 

9:50 AM - Accurately Predicting Healthcare-Associated Infections at Scale 

Dr. Jenna Wiens, University of Michigan 

10:25 AM - Identifying Health-system Level Opportunities for Predictive Model          
Deployment 

Dr. Vincent Liu, Kaiser Permanente 

11:00 AM - Coffee Break 

11:30 AM - Integrating Deep Learning into Routine Clinical Care to Rapidly Detect and              
Treat Sepsis 

Dr. Mark Sendak, Duke University 

12:05 PM - Lunch & Networking 

1:05 PM - The Right Solution to the Wrong Problem? Lessons from Deploying an              
ML-based Early Warning System 

Dr. Corey Chivers, University of Pennsylvania 

1:40 PM - Talk 5 

Dr. Suchi Saria, Johns Hopkins University 
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2:15 PM - Coffee Break 

2:45 PM - Rapid Fire Pathfinder Project Presentations 

Early Warning System for General Internal Medicine (St. Michael’s Hospital) 

Medly (University Health Network) 

Coral Review Project (University of Waterloo, University Health Network) 

Tick Identification to Combat Lyme Disease (Public Health Ontario) 

Artemis Project (Ontario Tech University) 

3:45 PM - Closing Remarks 

 

A2. Better understanding a model’s “silent” period and mode 
 
Many speakers stressed the need to ensure that the computational validation of models aligns 
with how data will be received in a real-time environment. To use the terminology of this report, 
it is important that ​in-silico​ validation approximates ​in-patient​ care. However no amount of 
carefully designed backtesting on retrospective data will ever be able to fully confirm that a 
model will be able to function in real-time in a clinical care setting. It is for this reason that all of 
the presented projects at the symposium went through a “silent period” where the ML algorithm 
was set to “silent mode”. Setting a model to silent mode means that its output does not directly 
impact clinical care. The silent period is the span of time when a model in silent mode is 
evaluated. There is variation in whether clinicians are involved in evaluating the silent period, 
with some having no interaction (​in-hospital mortality​),​47​ while in others there can be clinician 
feedback (​Sepsis Watch​).​48​ Other examples of silent periods to evaluate performance include 
the e-CART model to detect cardiac arrests and the EWS 2.0 system to detect sepsis.​33,49 
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