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EXECUTIVE SUMMARY

The adoption and application of computer vision (CV) is growing in many fields as new deep learning-based architectures deliver greater and more efficient performance on complex image-relatedtasks. New CV theories and approaches are showing the potential to drive transformative in-novation in many industries, including health care, banking, security, transportation, retail, andagriculture. From fully autonomous vehicles to automated clinical diagnosis and surgical supportsystems, CV systems have a major role in technologies that are ushering in an exciting future.
To accelerate these advances, the Vector Institute and its Industry Sponsor companies collabo-rated in the Computer Vision Project. Hosted by Vector’s Industry Innovation Team, the ComputerVision Project brought 15 Vector researchers together with 14 technical professionals from multi-ple sponsor companies to explore the application of new CV approaches to tasks inspired by theirreal-world industry needs. In addition to facilitating innovation, the Project was also designed tofoster greater collaboration between academic researchers and industry practitioners, increasingthe general proficiency of participants at building end-to-end CV pipelines, and growing ecosystemcapacity to drive further advances and application of large-scale CV models.
Project participants, divided into three working groups, designed and performed experiments us-ing three CV approaches: anomaly and semantic segmentation, two-stream neural networks,
and transfer learning. These approaches were applied in the following five use cases:

1. Anomaly detection in manufacturing (Section 2): Participants explored the use of autoen-coders trained on the MVTec Anomaly Detection dataset to optimize anomaly detection onthe manufacturing line. The group trained four types of autoencoders – a regular autoen-coder, a variational autoencoder, a constrained, and a context autoencoder – on images ofnon-defective manufacturing parts. The autoencoders were then tested on image data ofreal-world parts, assessing each image at the pixel level for anomalies. Autoencoder-basedapproaches to anomaly detection have the potential to enhance and automate quality as-surance at scale.
2. Semantic segmentation in aerial and road obstacle imagery (Section 3): Participantsapplied semantic segmentation techniques to two image sources: satellite imagery and dashcam footage. Semantic segmentation techniques involve labelling each pixel in an image witha class and grouping classified pixels to identify objects.

Satellite imagery: The group applied U-Net, UNet++, Fully Convolutional Networks (FCN) andDeeplabv3 models, trained on the SpaceNet Building Detection V2 dataset, to detect andextract the boundaries of buildings that appear in aerial images of cities. Automating fea-ture extraction from map data — a task that primarily relies on manual techniques today —can dramatically increase task efficiency and support important downstream uses, includ-ing humanitarian efforts, disaster response, and various industrial and public-sector remotesensing activities.
Road obstacle detection: The group applied U-Net and FCN, trained on the Lost and Founddataset, to detect road obstacles that appear in vehicle dashcam footage. Highly performantobstacle detection is crucial for the realization of fully autonomous vehicles, which requireexceptionally low object detection failure rates in order to meet safety certifications stan-dards.
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3. Automated traffic incident detection with two-stream neural networks (Section 4):Participants applied two-stream neural networks to dashcam footage to detect frames con-taining hazards, localize those hazards, and classify them by hazard type. Two-stream neuralnetwork architecture comprises two convolutional neural networks — one dedicated to spa-tial features and the other dedicated to temporal features — and are a key advancementin video understanding. The team trained the YOWO network architecture using the Detec-tion of Traffic Anomaly (DoTA) dataset, a benchmark dataset for video anomaly detection.Insights from the experiment can inform technology development to help mitigate vehiclecollisions and other road accidents arising from risky road behaviour.
4. Identifying clinically-relevant features of interest in cholecystectomy procedures (gall-

bladder surgery) (Section 5): Participants applied semantic and instance segmentation tech-niques to enable real-time identification of specific anatomical regions (e.g., the common bileduct, hepatic artery, and portal vein) that are ‘no-go zones’ for surgeons performing laparo-scopic cholecystectomy (the surgical removal of the gallbladder). Using training, The teamapplied U-Net and Detectron2 to images from the CholecSeg8k dataset (with no-go zonesextracted and annotated by a clinical partner) to detect, segment, and classify these areasalong with other features.
5. Transfer learning for efficient video classification and detection (Section 6): Participantsstudied the efficacy of transfer learning for detecting and classifying actions in videos thatcontain few or zero annotations. Transfer learning is the application of knowledge acquiredin one machine learning task to another related machine learning task. Done successfully,transfer learning can significantly reduce data preparation costs and increase training ef-ficiency. The team tested multi-modal similarity measures (lingual and visual) to transferconcepts. They transferred off-the-shelf, pre-trained action classifiers trained for spatio-temporal action detection on the Kinetics dataset to SlowFast model architecture using theAVA dataset.

Full descriptions of the technical implementations and results of each use case are provided in thereport.
The Computer Vision Project resulted in significant knowledge transfer between Vector researchersand industry participants, enhancing the real-world application potential of leading-edge computervision theory and techniques. The project has also revealed promising avenues for future explo-ration, including self-supervised learning (for general application), auto-annotation and data aug-mentation techniques (for application in clinical settings), open-set segmentation (for anomaly andsemantic segmentation in image data), and techniques for the prevention of over-fitting (for trafficincident detection). Finally, the insights and results achieved in the Project illustrate the importanceof collaboration between industry and academia, and make evident the role these joint efforts playin accelerating the innovative industrial application of new developments in artificial intelligence.
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1 INTRODUCTION

The Computer Vision industry collaboration project launched by the Vector Institute (Vector) aimedto explore new approaches in computer vision (CV) in an applied setting with the supervisionand expertise of Vector researchers, bringing together theoretical expertise with the deep domainknowledge of Vector sponsor companies.
This report provides an overview of the work that has been completed in collaboration betweenVector and industrial sponsors in the project. The project is intended to help Vector sponsors pre-pare their workforce for new advancements in vision systems and ensure they have the skills andtools to be more resilient as the world continues to evolve. The aim was to explore new applicationsof CV in the business setting as new theoretical approaches can enable better results compared totraditional methods.
With the development of automated image analysis technology, has been shown to be a promis-ing solution for various challenges that require specialized and labor intensive image analyses,including medical imaging
Recent approaches in computer vision and deep learning have inspired research and applicationsin decision making efforts and they also have the potential to revolutionize many areas such asautonomous driving, medical diagnostics, finance,and agriculture, and many more. These ap-proaches have led to the development of novel and robust tools such as for medical imaging (e.g.,[1, 2, 3, 4]) and for infectious diseases (e.g.,[5, 6]).
1.1 PROJECT OVERVIEW

This is a joint academic-industrial collaborative project launched in the summer of 2019 to exploreopportunities as well as promote recent advances in the Computer Vision domain. The project in-volved 29 participants: 15 Vector researchers and staff with expertise in machine learning andvision systems along with 14 industry technical professionals from Vector sponsor companies,namely Linamar, RBC, Thales Group, PwC, Scotiabank, Intact, and EY.
The participants established three working groups, each of which developed and performed ex-periments relevant to existing industry needs.
The primary objectives of the project were:

◦ foster and widen productive collaboration among academic researchers and industry prac-titioners on projects in the CV domain,
◦ help participants in gaining proficiency in building an end-to-end pipeline from data ingestionto large scale training and downstream fine-tuning, and
◦ build the capacity for further advances and new lines of businesses in large-scale vision mod-els in our ecosystem.

The project was conducted over 10 months. Weekly meetings were held to communicate current
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updates and tasks among project members. Common group activities in the weekly meetingsincluded problem solving, decision making, prioritization, and task assignment. Weekly meetingsalso featured invited guest talks, tutorials on recent advances in CV and ML from academia andindustry, and reading group activities of recent related literature.
ARegarding high-performance computing resources, Vector Institute provided high performancecomputing resource with GPUs for development and deployment of large-scale CV architectures.For the model development and evaluation, the implementation from the Vector Computer Visiontools 2 was used. The code for each use case implementation included the model, the metrics, thedatasets, the training and testing sets and was stored in a separate repository 3 Further details canbe found in the corresponding sections in GitHub.
Three broader topic related approaches were explored: anomaly and semantic segmentation, two-stream neural networks and transfer learning, which were applied to five specific image and videorecognition use cases. These use-cases reflected current industry needs, participants’ interestsand expertise, and opportunities to translate academic advances into real-world applications:

1. Anomaly detection in manufacturing
2. Semantic and instance segmentation in aerial and road obstacle imagery
3. Semantic segmentation in identifying clinically relevant features of interest in cholecystec-tomy procedures (gallbladder surgery)
4. Automated traffic incident detection With two-stream neural networks
5. Transfer learning for efficient video classification and detection

The remainder of this report provides an overview of each use-case and includes background andobjective, dataset and modelling approach, results and discussion, and limitations and best prac-tices.

2 ANOMALY SEGMENTATION IN MANUFACTURING

Contributors: Elham Ahmadi, John Jewell, Jinbiao Ning, Sim Sachar, Tristan Trim

2.1 BACKGROUND/OBJECTIVE

Anomaly detection is an important task in computer vision that is concerned with identifying anoma-lous images given a training set of only normal images. In anomaly segmentation, the conceptof anomaly detection is extended to the pixel level in order to identify anomalous regions of im-ages. There are many applications to anomaly detection including biomedical image segmentation,video surveillance and defect detection. In particular, defect detection involves detecting abnor-malities in manufacturing components and so is widely used in the industry to enhance quality
2https://github.com/VectorInstitute/vector cv tools3https://github.com/VectorInstitute/Computer Vision Project
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assurance and efficiency in the production process [7]. However, having a person manually in-spect each component is not feasible in most cases. To address this, systems have been proposedto automate the detection of defective components. These approaches generally take as input animage of a component and output a label or pixel-level mask that predicts whether the image orpixel is anomalous. Although initial approaches were generally ineffective, newer, deep learningbased approaches have shown very strong performance in anomaly detection and segmentation[8]. Thus, these new methods have the potential to dramatically increase quality assurance and ef-ficiency. In order to compare anomaly detection methods, several datasets have been proposed asbenchmarks such as MNIST [9], CIFAR [10], and UCSD [11], whereas there are much fewer bench-mark datasets for the anomaly segmentation task. To address this, the MVTec Anomaly DetectionDataset [7] was recently introduced as a benchmark for anomaly segmentation.
The goal of this focus area was to apply state-of-the-art methods to accurately segment anomaliesin the MVTec dataset. In doing so, we compared the performance of different anomaly segmenta-tion methods in the industrial inspection setting. Additionally, we sought to optimize the perfor-mance of the methods by altering the hyperparameters and architectures of the approaches. Theapproaches and corresponding results will be discussed at length in the following section.
2.2 METHOD

Anomaly segmentation is a challenging task because there are no examples of anomalies availableto train a segmentation network to discern between normal and anomalous pixels. As such, meth-ods focus on modelling the distribution of inlier data and checking if new samples conform to thedistribution of the inlier data at the pixel level. Conventional methods employ PCA, one class SVMand their variations, to learn a subspace that represents inliers samples well [8]. Unsupervisedtechniques such as Gaussian mixture models and k-means have also been employed to estimatethe distribution of inliers and outliers. Unfortunately, these methods perform poorly when appliedto high dimensional data [5].
Recent approaches to anomaly detection employ deep learning to model the distribution of highdimensional data. To this end, deep autoencoders have been a popular choice of architecturewhich is a neural network that learns to generate low dimensional encodings from which the orig-inal input sample can be reconstructed [5]. As an effective approach to generate compressedrepresentations of data without labels, autoencoders are used widely across different modalitiesof data including images, videos, text and speech. Autoencoders consist of two key components,an encoder and a decoder. The encoder learns a mapping from an image to a lower-dimensionallatent space, and the decoder learns a mapping from the latent space back to the original image.In this way, autoencoders are trained in an unsupervised manner by minimizing the error betweenthe original image and the reconstruction.
Several variations of the autoencoder have been proposed, some of which have been shown toperform well in the anomaly detection task. Specifically, a variational autoencoder enforces thatthe latent space follows a specified distribution. By ensuring the latent space conforms to a spe-cific distribution, variational autoencoders generate more robust representations for downstreamtasks than regular autoencoders. Alternatively, context autoencoders learn to reconstruct samplesthat have had portions of the input sample masked randomly [12].
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Figure 1: The four autoencoder architectures explored, with the first three having a normal inputand the last having a masked input: Regular Autoencoder, Variational Autoencoder, ConstrainedAutoencoder and Context Autoencoder.
Model: The four autoencoder architectures explored are regular autoencoder, variational autoen-coder, constrained autoencoder and context autoencoder with the first three having a normalinput and the last having a masked input. An overview of the aforementioned architectures isavailable in Figure 1.
Dataset: In order to explore the application of autoencoders to the task of anomaly segmenta-tion in manufacturing, the MVTec anomaly detection dataset was used [7]. It contains 5354 high-resolution images from 15 different object categories and includes 70 different types of defectsacross the anomalous images that are typical in the manufacturing process. For each object cate-gory, a training set of normal images of objects and textures as well as a test set with both normaland anomalous samples along with their corresponding labels. An example of the dataset is avail-able in Figure 2.
2.3 RESULTS AND DISCUSSION

Implementation Details: For each autoencoder, the same base architecture was used with asymmetric encoder and decoder. The encoder consists of six convolutional layers with 128, 256,512, 1024, 2048 and 2048 channels, respectively. A stride size of two and kernel size of four isused to downsample the image to a feature map that is flattened and passed to the decoder. Thedecoder consists of six transposed convolutional layers with 2048, 2048, 1024, 512, 256 and 128channels, respectively. A stride size of two and a kernel size of four is used to upsample the inputvector to the dimensions of the original image. Each convolutional layer has a kernel size of fourand is followed by batch normalization layer and a ReLU non linearity. The models were trained forfifty EPOCHS using the ADAM optimizer with a constant learning rate of between .001 and .0001.Experiment code was implemented in PyTorch and experiments were conducted on the VectorInstitute compute cluster. Each model was trained with a single NVIDIA T4 GPU and took roughlyfour hours to complete.
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Figure 2: An overview of the MVTec dataset including examples of both normal images and inliersfrom various object and texture classes.
Experimental Setup: The MVTEC dataset object categories each include a train set of normalsamples and a test set of both normal and anomalous samples. Models were optimized to be ableto reconstruct samples from the inlier distribution during the training phase. Subsequently, at testtime, both normal and anomalous images are input to the model and the pixelwise reconstructionerror of samples is used to identify anomalous regions. Specifically, the models were evaluated onthe testing data for each of the object categories and the average area under the ROC curve (AUC)is reported. A small validation set of normal images is used to determine which model step yieldsthe most optimal set of parameters. Specifically, 10% of images were randomly removed from thetrain set and used as the validation set. For testing, the entire test set was used and the averageAUC across object categories is reported for each method.
Results: Results from the aforementioned experiments are available in Table 1. Each modelachieves a moderate AUC score on the anomaly segmentation task despite being trained with nolabels. Although the models perform similarly, it is worth noting that each of the autoencoder vari-ations (context, constrained, variational) outperform the regular autoencoder. This is an indicationthat these methods have architectures and/or objectives that are better suited to the anomaly de-tection task than regular autoencoders, a pattern that matches the conclusions of other recentworks [5].
The context autoencoder achieves the best performance with an AUC of 0.79065. This strong per-formance can be attributed to the fact that they offer semantically rich representations by learningto inpaint masked regions of images in addition to reconstructing them. Visual results from thecontext autoencoder further support the strong quantitative results and are available in Figure 3.
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Model AUCContext Autoencoder 0.79065Variational Autoencoder 0.785652Constrained Autoencoder 0.782606Regular Autoencoder 0.77138
Table 1: AUC Scores of each model on the MVTEC Dataset.

Figure 3: An example of an image, reconstruction, error map and ground truth segmentation maskfor an anomalous sample in the MVTEC dataset.
2.4 LIMITATIONS AND BEST PRACTICES

This study offers an applied survey of several variations of autoencoders for the anomaly seg-mentation task on the MVTec dataset. Although this analysis is helpful for practitioners looking todeploy autoencoder-based anomaly segmentation systems, it does have limitations. Namely, twoassumptions were made about the nature of the data. First, it is assumed that the training dataconsists of only inliers. This may not always be a realistic assumption; especially in the case of largeuncurated datasets. In practice, as long as the proportion of anomalies in the training set is low,autoencoder-based approaches to anomaly segmentation will still work well. However, a formalanalysis of this is omitted because it is beyond the scope of this project. Second, it is assumedthat a small validation set consisting of both inliers and outliers is available to use as a stoppingcriterion during the training phase. This may not be possible in situations where anomalies arenot well defined or extremely hard to sample. In practice, it seems reasonable to amass a smallcollection of both normal images and anomalous images to use for this purpose but the validity ofthe assumption varies across use cases. However, in the absence of outliers, other metrics definedover a validation of exclusively normal images can be used as a heuristic for when to stop training.
In light of the aforementioned limitations, we still strongly believe that autoencoder-based ap-proaches offer a robust solution to the anomaly segmentation task, especially when compared tosupervised methods that are costly and time consuming to deploy.

3 SEMANTIC SEGMENTATION IN SATELLITE IMAGERY AND ROAD
OBSTACLE DETECTION

Contributors: Elham Ahmadi, John Jewell, Jinbiao Ning, Tristan Trim
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3.1 SEMANTIC SEGMENTATION OVERVIEW

Semantic segmentation is a subclass of image segmentation where pixels are grouped togetherbased on their class [13]. It plays a critical role in a broad range of applications such as autonomousdriving (e.g. self-driving cars or autonomous trains), geospatial analysis (e.g. building footprint ex-traction) and medical image segmentation (e.g. biomedical marker discovery). The goal of seman-tic segmentation is to label each pixel of an image with a class, effectively partitioning the pixelsin the image into groups based on object type. Due to the high dimensional nature of both theinput and the output space, semantic segmentation has traditionally been a very challenging taskin computer vision [13]. Fortunately, recent supervised deep learning approaches have achievedrobust semantic segmentation performance on a variety of challenging benchmarks [14]. Theseapproaches use large datasets of images with corresponding pixel wise labels to train neural net-works by iteratively updating the parameters of the model to minimize a differentiable loss thatcharacterizes the difference between predictions and labels. At inference, new samples are fed tothe network and it produces a segmentation map with the same spatial resolution as the input im-age that encodes the label of each pixel. Figure 4 provides an example of semantic segmentation,where the goal is to predict class labels (i.e. Person, Bicycle, and Background) for each pixel in theimage.
The objective of this focus area is to apply cutting edge semantic segmentation methods to a va-riety of datasets. In particular, we first explore binary semantic segmentation on the Spacenetdataset. The goal is to segment building footprints from the background area in satellite imagery.Next, building on our experience with binary semantic segmentation, we explore the multi-classsetting using the Lost and Found dataset. The goal is to segment drivable area, non-drivable areaand obstacles in scenes captured from the dashboard camera of a vehicle. A thorough outline ofthese use cases, along with results from our experiments, will be available in Section 3.2 and 3.3,respectively.

Figure 4: An example of semantic segmentation, where the goal is to predict class labels for eachpixel in the image. [15]
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3.2 SATELLITE IMAGERY WITH SEMANTIC SEGMENTATION MODELS4

3.2.1 BACKGROUND/OBJECTIVE

The objective of this use case is to extract building boundaries from aerial imagery by using ad-vanced semantic segmentation methods. Current approaches to extracting features from mapssuch as roads, building footprints, and points of interest are primarily based on manual techniques.Advancing automated feature extraction techniques will serve important downstream uses of mapdata including humanitarian, disaster response and agriculture. Furthermore, solving this chal-lenge is an important stepping stone to unleashing the power of advanced computer vision algo-rithms on a variety of remote sensing data applications in both the public and private sector.
3.2.2 METHOD

Model: The four approaches to semantic segmentation were explored include: U-Net [14] (Figure5(a)), U-Net++ [16] (Figure 5 (b)), Fully Convolution Networks (FCN) [17] and Deeplabv3 [18]. Forboth FCN and Deeplabv3, two variants of the architecture with different backbones (Resnet-50 andResnet-100) are included. FCN and Deeplabv3 with a Resnet-50 backbone (FCN-50 and DLV-50), aResnet-101 backbone (FCN-101 and DLV-101) were benchmarked. The backbones were pretrainedusing the COCO train2017 semantic segmentation dataset [19] and fine-tuned for the buildingfootprint extraction task. In total, six approaches are benchmarked on the task of building footprintextraction in aerial images.

Figure 5: U-Net Architecture [14](a) and UNet++ Architecture [16](b).

Dataset: To explore the application of semantic segmentation to building footprints from satelliteimagery the SpaceNet Building Detection V2 dataset [20] was used. This dataset contains 302701building labels (polygons) from 10,593 multispectral satellite images of Las Vegas, Paris, Shanghai,and Khartoum. The dataset is split into two classes: building and background, as can be seen inFigure 6.
4This work has been presented in the Location Intelligence and Knowledge Extraction 2022 Conference
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Figure 6: An example of the images (a) and labels (b) in the Spacenet Building Detection V2. [20]

3.2.3 RESULTS AND DISCUSSION

Implementation Details: The experiments were implemented in Python using the PyTorch Frame-work and conducted on 4 NVIDIA Telsa P100 GPUs. The architecture for each approach is consis-tent with that specified in the original papers [14, 16, 17, 18]. Each method is trained for 30 Epochsusing the ADAM optimizer with a learning rate of 2e-4. Random seeds are used to strive for con-sistency in evaluation and reproducibility of the experiments.
Experimental Setup: The dataset is divided into training (80%), validating (10%) and testing (10%)sets. Images are resized from 650x650 to 384x384 using bi-cubic interpolation and normalizedusing the mean and standard deviation of the Imagenet dataset [21]. The proposed semanticsegmentation models are trained on the training set, while the validating set is used to determinea stopping criteria. Lastly, the trained model is evaluated on the testing set. Intersection over Union(IoU) is the metric used to evaluate the model performance and measures the overlap betweenthe labels of the prediction and ground truth. IoU ranges from 0 to 1 where 1 denotes perfect andcomplete overlap.
Results: The IoU of each method on the test set is reported in Figure 2. DLV3-101 achieves thebest performance with an IoU of 0.7734 followed closely DLV3-50, FCN-50 and FCN-101. U-Netand U-Net++ perform comparatively worse with an IoU of 0.5644 and 0.6554, respectively. Theperformance gap can be attributed to the fact that FCN-50, FCN-101, DLV3-50 and DLV3-100 benefitfrom pre-training whereas U-Net and U-Net++ do not. This performance gap is also apparent inFigure 8 which shows the train and validation loss of each method across epochs. Methods thatleverage pre-training are able to achieve better performance on both the train and validation setfrom the onset of training. The validation loss begins to plateau after only a few epochs whichsuggest that training is finished and should be early stopped to prevent overfitting. Alternatively,U-Net and U-Net++ have train and validation losses that consistently decrease over the course oftraining. This highlights the fact that models that leverage pretraining converge to the optimal setof parameters faster in addition to offering better performance.
Qualitative results are available in Figure 7, which shows an example input image, ground truthlabel and predicted semantic map for each method. The prediction quality of methods follow
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Figure 7: A visualization of the predictions generated by each approach along with the input image(far left) and ground truth label (far right).
the quantitative results but performance is impressive across the board. The methods are able togenerate precise semantic maps in scenes densely populated with building footprints. Additionally,predicted semantic maps in scenes that are sparsely populated with building footprints are robustto false positives, even in cases where roadways, parking lots or other structures are present.
A preliminary analysis of the importance of model architecture conditioned on pretraining yieldsinteresting results. The performance among methods that leverage pretraining is similar, evenacross different architectures and backbones. Conversely, when considering the performanceamong methods that do not leverage pretraining, U-Net++ vastly outperforms U-Net. Althoughthis warrants further experiments to validate, one hypothesis is that model architecture becomesless relevant as the amount of pretraining increases.

MODEL U-NET UNET++ FCN-50 FCN-101 DLV3-50 DLV3-101
UoI 0.5644 0.6554 0.7455 0.7472 0.7612 0.7734

Table 2: IoU score on test set for each approach
3.3 ROAD OBSTACLE DETECTION WITH CNN AND U-NET

3.3.1 BACKGROUND/OBJECTIVE

Detecting obstacles on the road/railway is a critical part of the driving task which has not been mas-tered by fully autonomous vehicles. Semantic segmentation plays an important role in addressingthe challenges of identifying the locations of obstacles. The dataset is divided into training (80%),validating (10%) and testing (10%) sets. Images are resized from 650x650 to 384x384 using bi-cubicinterpolation and normalized using the mean and standard deviation of the Imagenet dataset [21].The proposed semantic segmentation models are trained on the training set, while the validatingset is used to determine a stopping criteria. Lastly, the trained model is evaluated on the testingset. Intersection over Union (IoU) is the metric used to evaluate the model performance and mea-sures the overlap between the labels of the prediction and ground truth. IoU ranges from 0 to1 where 1 denotes perfect and complete overlap with obstacles on the road and railway. There-
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Figure 8: Binary cross entropy loss for training set (top) and validation set (bottom) across epochs.
fore, the second use case we chose to explore was semantic segmentation methods for obstacledetection on the road and railway.
3.3.2 METHOD

Model: The two models we have chosen to explore are popular semantic segmentation models:U-Net [14] and fully convolutional networks (FCN) [17]. Since U-Net was introduced in section 3.2.2,the following section offers a brief description of the FCN architecture only.
FCN efficiently learn to make dense predictions for per-pixel tasks [17]. They are trained end-to-endto perform semantic segmentation by mapping arbitrary-sized input images to predicted semanticmaps using convolutional layers. In-network upsampling layers are leveraged to make pixel-wisepredictions by increasing the spatial resolution of the features generated by the backbone of thenetwork to the desired height and width of the output semantic map. To this end, contemporaryclassification networks (such as AlexNet [22], VGG net [23], and ResNet [24]) are often used asbackbones and transfer their learned representations by fine-tuning [17] to the segmentation task.The FCN used in our experiments has an architecture that combines semantic information from adeep, coarse layer with appearance information from a shallow, fine layer to produce accurate anddetailed segmentation by using skip connections. An overview of the FCN architecture is availablein Figure 9.
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Figure 9: The architecture of FCN [17].

Dataset: In order to explore the application of semantic segmentation to detect road obstaclesfor autonomous vehicles, the Lost and Found dataset [25] was used. It was introduced to evaluatethe performance of small road obstacle detection approaches [25]. The Lost and Found Datasetincludes 2k images recording from 13 different challenging street scenarios, featuring 37 differentobstacles types. Each object is labeled with a unique ID, allowing for a later refinement into sub-categories. An overview of the Lost and Found dataset is available in Figure 10, which is refinedinto three classes: driveable area, non drivable area and obstacles.

Figure 10: An example image from the Lost and Found Dataset (a) and the ground truth with threelabels (b).

3.3.3 RESULTS AND DISCUSSION

Implementation Details: U-Net was implemented as a baseline and compared with FCN. Thecross entropy coefficient was monitored and an early-stopping mechanism was applied to thevalidation set. The network was optimized using the Adam optimizer with a learning rate of 1e-5.
Experimental Setup: The labels in the Lost and Found dataset were refined into 3 Classes: drive-able area, non drivable area and obstacles. The Lost and Found dataset was divided into training(80%), validating (10%) and testing (10%) set. The proposed semantic segmentation models weretrained on the training set, while the validating set was used to determine the criteria and the
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trained model was tested by the testing set.
Results: Although both approaches perform similarly, the pre-trained FCN achieves the best per-formance on the validation set as evidenced by the quantitative results in Figure 11 and the quali-tative comparison in Figure 12. In addition, FCN is also more stable to train. This most likely stemsfrom the fact that FCN uses a Resnet 50 pretrained backbone while U-Net is trained entirely fromscratch.

Figure 11: Cross Entropy Loss on Validation Set for U-Net and FCN across epochs.

Figure 12: Qualitative comparison between U-Net and FCN.

3.4 LIMITATIONS AND BEST PRACTICES

Real-time Consideration: The inference time is critical in obstacle detection for autonomousvehicles. However, U-Net, UNet++ and FCN are not a real-time detectors. Further exploration onreal-time model architectures is important (e.g. ICNET [26]) to consider when deploying productionsystems with low-latency requirements.
Supervision and Labelling: Semantic segmentation is a supervised learning method. This im-
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plies that it requires a dataset of images along with corresponding pixel-wise labels. In the caseof anomalous objects, it is difficult to obtain labelled examples by virtue of the object being out-of-distribution. Accordingly, it may not always be realistic to obtain labelled examples of objectclasses that are out-of distribution. Thus, in the absence of labelled examples for some classes,recent approaches have resorted to incorporating anomaly segmentation techniques into super-vised semantic segmentation methods [27, 28]. In cases where labels are not available for a certainsubset of classes, these approaches are more suitable.

4 AUTOMATED TRAFFIC INCIDENT DETECTION WITH TWO-STREAM
NEURAL NETWORKS1

Contributors: Andrew Alberts-Scherer, Matthew Kowal

4.1 BACKGROUND/OBJECTIVE

Being able to detect risky road behaviour is an important step in the mitigation of vehicle collisionsand other road accidents. For example, drivers demonstrating reckless driving or near-missesmay be helped by additional road training to correct behaviours and prevent future collisions.Knowledge of particular risky driving maneuvers, such as swerving and tailgating can also be of usefor insurance companies in better underwriting and pricing auto insurance policies, thus allowingthem to be more selective and more fair in their determination of premiums.
One tool to achieve this is the dashcam; a continuously recording front-facing camera aimed outthe windshield of a car. Footage from these cameras have been used to determine the at-faultparty in accidents, and as of more recently are being used as part of risk-mitigation programs forcommercial fleets. Fleet managers use these tools to ensure compliance of road safety and todiscover drivers in need of additional training [29].
Making use of large quantities of dashcam footage is however difficult in a manual fashion. Forexample, a salaried professional would need to watch through hundreds of thousands of hoursof video to pinpoint where risks happen and what those risks are. A more tractable approachis to harness techniques from computer vision to produce an artificially intelligent system whichlooks at all the videos and automatically detects the frame or set of frames involving a hazard andclassifies the type of risk and localizes the subjects of the risk.
4.2 METHOD

4.2.1 DATASET

The Detection of Traffic Anomaly (DoTA) dataset [30] is a benchmark dataset used for video anomalydetection. It uses a where-what-when labelling scheme, where the objective is to detect, localize,and recognize traffic incidents or anomalies. The dataset contains 4,677 videos (731,932 frames)at 10 frames per second (fps) with 1280x720 resolution. The dataset is collected from YouTubeand has nine anomaly classes (see Table 1). Every frame is either labelled as an anomaly or anon-anomalous frame. The anomalous frames have two types of labels (i) bounding boxes of eachobject in the anomaly with corresponding object category labels and (ii) the anomaly class. There-
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Anomaly ID Description of Anomaly # of Videos in Original / Ours1 Collision with another vehicle which starts, stops, or is stationary 95 / 892 Collision with another vehicle moving ahead or waiting 663 / 6013 Collision with another vehicle moving laterally in the same direction 726 / 6184 Collision with another oncoming vehicle 477 / 4275 Collision with another vehicle which turns into or crosses a road 1696 / 15066 Collision between vehicle and pedestrian 100 / 927 Collision with an obstacle in the roadway 95 / 538 Out-of-control and leaving the roadway to the left or right 732 / 4599 Unknown 92 / 55
Table 3: The nine types of anomalies in the DoTA dataset. The dataset is downloaded from YouTubeand therefore some of the videos are unavailable. We show the number of videos in the originaldataset and our version in the final column.

Object ID Description of Object # of Occurrences in Train + Val set1 Person 61+312 Rider 284+1113 Car 2978+12644 Bus 55+415 Truck 375+1606 Bike 29+137 Motorcycle 243+88
Table 4: The object distribution in the DoTA dataset.

fore, the task of the network is to predict whether or not the frame is anomalous, and if it is, detectthe objects involved in the incident and also classify the anomaly. The dataset has a diverse rangeof scenes and the number of examples per class vary significantly, which makes it a challengingtask. For example, the smallest class (9: Unknown) has 92 videos while the largest class (5: Collisionwith another vehicle which turns into or crosses a road) has 1696.
4.2.2 MODEL

The network architecture we chose for this problem is ”you Only Watch Once” (YOWO) [31]. Whilethere are many video-detection architectures we could have selected, this architecture was chosenbecause (i) it is efficient and easy to implement and (ii) it is modular.
The default YOWO architecture (see Fig. 1) is a modular architecture designed for action detectionin video. YOWO has three main components: (i) the 3D CNN backbone, the (ii) 2D CNN backbone,and (iii) the Channel Fusion and Attention Module (CFAM). The 3D CNN backbone takes as input 16frames from a video and the 2D CNN backbone takes in the current frame as input. Both networksoutput a feature representation with the same spatial size, with the 3D CNN output having thetemporal dimension average pooled. The CFAM module takes both representations as input, andperforms a channel-wise attention between them. The model uses both a 3D and 2D input to allowfor the network to learn to use both motion and appearance visual information in each stream. TheCFAM module then allows for a global comparison of these features along the channel dimensionto determine which features are required for the final bounding box predictions.
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Figure 13: Our modified version of the YOWO architecture. Our modification is the addition of thefully connected (FC) layer which predicts an anomaly classification along with the bounding boxpredictions.
The output of the network uses anchor boxes to determine the final bounding box predictions. An-chor boxes are precomputed bounding boxes (i.e., a height and a width), which are copied manytimes over the entire image. Bounding box proposals are obtained from the final feature repre-sentation of the YOWO model. Then non-maximum suppression is applied to remove noisy orduplicate bounding boxes from the proposals. The remaining boxes are then compared (i.e., over-lap) with all of the anchor boxes and only the ones with the most overlap are kept as the finalprediction.
Architectural changes. The first architectural change we made was to replace the backbone net-works with ones pre-trained on more similar tasks as ours (traffic anomaly detection). The de-fault architecture uses a DarkNet [32] trained on PASCAL-VOC [33] for the 2D CNN and a ResNeXt-101 [34] trained on Kinetics400 [35] for the 3D CNN. PASCAL-VOC has some classes relating tovehicles (e.g., the classes bus, car, and motorbike), however none of the images are taken fromthe dashcam of a car, which is a significantly different data distribution than photos taken withhandheld cameras. For this reason, experimented with various 2D CNN backbones trained on theCityScapes [36] dataset for semantic segmentation, which is a large ego-centric driving datasetwith pixel-level labels for 30 classes. The intuition is that this pre-trained backbone should resultin better performance than using the PASCAL-VOC trained backbone.
The second architectural change was made to accommodate the types of labels found in the DOTAdataset. As mentioned previously, each anomalous frame in DOTA has both object detection labelsand a frame-level anomaly classification label. The YOWO network however only predicts detec-tions, and does not have the capability to predict frame-wise classifications. To solve this issue,we designed an additional anomaly classification head, which takes the network features as input(which are of shape batch x channels x 7 x 7) and globally pools the spatial dimensions to obtain avector. This vector is then passed to a fully connected layer which then classifies the anomaly (i.e.,its output feature is the same size as the number of anomalies, 11).
Loss Function. Our modified YOWO architecture outputs two predictions, a bounding box regres-
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sion / classification and an anomaly classification. To this end, we use the original loss used inYOWO [31], Lbox, with an added anomaly classification loss, Lanom. Our total loss function is:
Ltot = Lbox + λLanom, (1)

where Lanom is a standard multi-class cross entropy loss and λ is a weighting hyperparameter (seeSec 4.3 for ablations of this value).
4.3 RESULTS AND DISCUSSION

Implementation Details: We train all YOWO models with 16 frames at a sampling rate of 1 and abatch size of 48. During training, images were scaled to a size of 268 and then randomly croppedto a size of 224x224. During testing, images were rescaled to a size of 224x224. All models weretrained for 200 epochs unless otherwise stated with a learning rate of 1e-3 which decays by a factorof 0.5 every 20 epochs. We used the ADAM optimizer with momentum of 0.9 and weight decay (L2)of 1e-4. All experiments were trained on the Vector Institutes computing cluster. All models weretrained on four NVIDIA Tesla T4 GPUs and 32 CPUs, and took approximately 24 hours to complete.
Evaluation of 3D Backbones:

We first determine the best 3D backbone to use in the motion stream of the YOWO architecture.We compare four different backbones (listed by increasing number of parameters): ShuffleNet2-v2‘[37], ResNet-18 [24], ResNet-50, and ResNext-101. The results from this experiment are shownin Fig. 14. Notable, the smallest model (ShuffleNet2-v2) achieves the best fscore. This could bebecause the dataset is on the small side, and therefore a network with lower capacity may overfitless to the training data. The anomaly classification accuracy was 39.4% for ShuffleNet2-v2 and39.5% for 3D-ResNet18, however, we choose ShuffleNet2-v2 because the performance differenceis greater when considering the fscore (see Fig. 14).

Figure 14: Experimenting with various 3D CNN backbones for YOWO. The smallest model,ShuffleNet2-v2, results in the best fscore.

Evaluation of 2D Backbones: In this experiment, we aim to see whether replacing the 2D back-
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Class ID 1 2 3 4 5 6 7 8 9 AverageAnomaly Classification Accuracy 0.0 51.4 35.9 34.4 70.8 5.9 0.0 16.7 20.3 48.3

Table 5: Per-class anomaly classification accuracy on the DOTA validation set.
bones (i.e., appearance stream) with different architectures and/or pre-training strategies can ben-efit the YOWO model’s final performance. Figure 15 shows the results, in terms of Fscore andanomaly classification accuracy, of YOWO with various 2D backbones. Here, ‘Frozen’ and ‘Unfrozen’refer to the weights of the backbone being optimized during training or kept as the initializationweights. Note that all models are trained on the CityScapes [36] dataset, except for Darknet, whichis trained on PASCAL VOC [33]. The results in Fig. 15 show that Darknet results in the best Fscore,while all models obtain similar performance in terms of the anomaly classification accuracy.

Figure 15: YOWO performance in terms of Fscore (left) and anomaly classification accuracy (right)with the appearance backbone replaced with various 2D CNN models. Darknet results in the bestoverall performance.

Anomaly Cross Entropy Weighting: The output of the model is penalized with a bounding boxand classification loss for objects, and a cross entropy loss for the anomaly taking place in thevideo. Given that the losses are on different scales (e.g., the bounding box loss is between 10-300 while the cross entropy loss is between 0.5 − 4) we place a weighting parameter, lambda, onthe cross entropy loss. We run an ablation study with λ = {0.1, 0.5, 1, 5, 10}. We look at both theanomaly classification accuracy and bounding box loss to ensure that we are not sacrificing objectdetection performance for anomaly classification performance. From Fig. 16, we conclude that alambda value of 5 gives the optimal trade-off between these two metrics, and so we use this valuein all remaining experiments.
Final Model Performance: Given the results from the previous experiments, we now show theresults for the final model. Table 2 shows the final per-class results in terms of anomaly classifica-tion accuracy. The anomaly classification accuracy for this model is 48.3% while the average objectdetection fscore achieved is 53.6%. These scores suggest that, while the model can correctly de-tect and classify anomalies about half the time, it is still premature for anything close to real-worlddeployment. We can also see the effect of the uneven data distribution in the class ID’s
Qualitative examples of our final model are shown in Fig. 17. The model is capable of impressivedetections in multiple weather conditions. Our model seems to perform well on common accidenttypes. The most common occurring anomaly types involve being hit from the side and it can be
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Figure 16: Ablating the anomaly classification weighting hyperparameter, λ. Our results showλ = 5as the best candidate.
seen that our model often is successful for these anomalies (see Fig. 17, bottom-left) and gets ananomaly classification score on Class ID 3: ‘Laterally Hit’ of 35.9% and Class ID 5: ‘Collision withTurning Vehicle’ of 70.8%. However, there are specific scenarios where our model struggles. Morespecifically, it has difficulty detecting objects of interest that are far away from the driving vehicle,as well as more rare classes such as Class ID 6: ‘ Collision with Pedestrian’ for which an accuracy ofonly 5.9% is obtained. Resolving these issues is left as a major focus for future work.
4.4 LIMITATIONS AND BEST PRACTICES

This project involved a number of technical challenges. One pervasive difficulty is that of overfitting,where the model performs well on the training set but poorly on the test set. A cause of this is thelimited size of the DoTA dataset, which was further diminished due to about 2000 of the clips beingremoved from YouTube and therefore not accessible to the authors.
Overfitting issues were not overcome due to time and computational resource constraints. Limitson resources made it such that a full-fledged hyperparameter search could not be run, and theauthors had to use judgement to determine a sequence of experiments and only tune a portionof the potential variables. Thus, there was no time left to experiment with backbones with lessparameters and account for overfitting that way.
While the scope of this project was to determine the key subjects and type of anomaly conditionalon there being an anomaly, one important step for future work is to determine which clips docontain anomalies and which do not. This would be beneficial for applications in which the userwishes to identify and focus on traffic accidents, and discard regular driving.
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Figure 17: Qualitative examples of our final model. We show successful (left) and unsuccessful(right) predictions. The groundtruth and prediction are labelled in green and red, respectively.

5 IDENTIFYING CLINICALLY RELEVANT FEATURES OF INTEREST
IN CHOLECYSTECTOMY PROCEDURES

Contributors: Kuldeep Panjwani, Shuja Khalid, Gabriel Chan, Vincent Zha

5.1 BACKGROUND/OBJECTIVE

Laparoscopic cholecystectomy (i.e., surgical removal of the gallbladder) is one of the most commonsurgeries performed in modern medicine (approximately 200,000/year in the US) [38]. Complica-tions during difficult operations can result in longer recoveries, long-term disabilities, and evendeath. The goal of the operation is to remove the gallbladder and not injure other critical organsor structures that are in close proximity, such as the liver, intestine, bile ducts, arteries, and theportal vein. The goal of safe cholecystectomy has been based on the ”critical view of safety (CVS)”,which is defined by the complete and safe dissection of the cystic duct and artery at the base ofthe gallbladder. The goal of the project is to develop a near real-time tool for identifying criticalregions during surgery to assist surgeons to arrive safely to the CVS.
5.2 METHOD

Model: Various computer vision methods such as object detection [39], semantic segmentation[17], and instance segmentation [40] may be used for this analysis. We decided that the mostprecise of the aforementioned approaches would capture the exact dimensions of the CVS (no-go zone) as opposed to an approximation of the intended region. Both semantic and instancesegmentation techniques were explored for this purpose.
Semantic segmentation: Semantic segmentation is the process by which each pixel in an image
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(a) (b)

Figure 18: UNet architecture [14] (a) and Mask-RCNN architecture [41] (b).
is labeled with a class. In semantic segmentation, the background pixels are also labeled, as thisconcept doesn’t depend on the number of objects in an image but the class to which each pixelbelongs [40]. A commonly used, supervised semantic segmentation model was trained using theprovided annotations. The assigned classes are presented in Table 6. The assigned classes arepresented in Table 6 and a high level architecture of the U-Net model is presented in Figure 18a.
Instance segmentation: Instance segmentation is based on both class recognition and instancerecognition tasks. It goes beyond semantic segmentation in the sense that it can give more insightinto the amount of objects belonging to a specific class within an image [40]. Instance segmen-tation allows for differentiating between different objects of the same class. A commonly usedinstance segmentation model, Mask-RCNN [41]5, is fine-tuned to the custom task. We employ aone-vs-all approach as we focus on only the pixels associated with the CVS. The assigned classesare presented in Table 6 and a high level architecture of the Mask-RCNN model is presented inFigure 18b.
5.2.1 QUALITATIVE (FRAMES)

(a) (b)
Figure 19: An illustration of the relative position of the gallbladder [42] (a) and Illustration of theregion of interest (b).

5https://github.com/facebookresearch/detectron2

26 © 2022 Vector Institute



(a) (b)
Figure 20: Input Image (a) and Target Output (b).

Table 6: Defined classes for the chosen modelling tasks.
Class ID Class Name
1 Background2 No-go-zone3 Liver4 Tools5 Gallbladder6 Fatty tissue

(a) Semantic segmenta-tion

Class ID Class Name
1 Background2 No-go-zone

(b) Instance segmentation

Temporal smoothing: The Mask-RCNN model predictions are made at the frame level. Whiletesting with video data, it became apparent that the resulting segmentations varied slightly acrossframes which manifested as flickering effects. To filter out this noise, we performed temporalsmoothing by averaging the frame predictions across 5 frames throughout the video which re-sulted in less distracting videos. A more consistent approach and better smoothing algorithms willundoubtedly yield smoother outputs.
Dataset: There is a relative lack of datasets in the healthcare community, especially datasets con-sisting of surgical content. The Cholec80 dataset [43] is among the handful of publicly availabledatasets that has been used for providing proof-of-concept results for a variety of machine learn-ing tasks in healthcare and surgery. The CholecSeg8k dataset consists of 8000 frames that havebeen annotated by Hong et al. [44]. A sample annotation is presented in Figure 20. Due to thechallenging nature of the task, there are no baselines to compare against. It is also important toconsider that the predicted classes presented in the paper have discernible bounds that may beused for prediction. The inclusion of an additional class (CVS) makes the modelling problem evenmore challenging.
Annotations For training the Mask-RCNN model, we collaborated with Dr. Gabriel Chan (Assistant
Professor of Clinical Medicine, Surgery - Hôpital Maisonneuve Rosemont) to procure a list of annota-
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Figure 21: Sample output for the semantic segmentation task (left) using the UNet architecture.

Table 8: Results for the segmentation modelling task.
Feature Dice Coefficient
No-go-zone 0.51Liver 0.67Tools 0.16Gallbladder 0.50Fatty tissue 0.71

tions for segmenting the CVS. An example segmentation is shown in Figure 19a and 19b. Over aperiod of three months, Dr. Chan and his team annotated approximately 1100 frames using theVIA annotation tool [45] which were used for training the Mask-RCNN model. It is important tonote that not every frame consists of a no-go zone.
5.3 RESULTS AND DISCUSSION

5.3.1 SEMANTIC SEGMENTATION

Figure 21 shows the qualitative results for the frame-wise segmentation where the per-pixel clas-sifications are assigned. Without a holistic spatio-smoothing kernel, the resulting predictions arehighly susceptible to specular effects as is seen in the results. The model is nevertheless able tocorrectly segment most of the important classes. The resulting quantitative results are presentedin Table 8.
5.3.2 INSTANCE SEGMENTATION

After discussing the semantic segmentation results, it became apparent that not all of the classespresented in the semantic segmentation task would provide clinical value. The task was thenslightly modified such that the same annotations were used but the task would focus on binarysegmentation. Instead of assigning a per-pixel classification for every image, we chose to regressover a region and capture the set of pixels that would be described as the CVS. We use the Mask-RCNN model for this instance segmentation task. The qualitative results for instance segmentationare presented in Figure 22 and Figure 23. The instance segmentation task yielded an mAP of 0.51for the no-go zone.
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Table 9: Colour code for UNet multi-class segmentation
Feature Colour
Liver BlueTools Reddish-grayGallbladder TealFatty tissue Dark green

(a) (b) (c)

(d) (e) (f)
Figure 22: (a), (b) & (c) are acceptable segmentations as corroborated by our collaborator (Dr. G.Chan) whereas (d), (e) & (f) are potentially erroneous segmentations.

(a) Access (b) Dissection
Figure 23: Predicted no-go zone for during various steps of the surgical procedure, the model wasonly trained on annotated data from the dissection portion of surgery but is able to generalizeacross different procedures.

Annotations: Annotations were provided around the bounding box of the segment in case of theno-go zone area. The multi-class semantic segmentation colour code is in Table 9
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5.4 LIMITATIONS AND BEST PRACTICES

Data: Surgical video data has many challenges pertaining to model training. One of the mainchallenges is due to varying lighting conditions. Videos captured through a laparoscopic cameraare illuminated using an auxiliary light source for visibility [46]. Due to specular artifacts resultingfrom the outer membrane of internal organs, this illumination source can saturate pixels leadingto inconsistent segmentation results. Another challenge encountered was due to the gelatinousand deformable texture of organs. During each surgery, organs are grabbed by the grasper. Thiscauses a change in the shape of each region to be labeled within the frame, which is another sourceof uncertainty for the model’s object and class detection functionalities [47].
Quantity of annotations required: Surgical data is manually labeled by qualified annotatorswithin the medical field. This causes a potential lack of annotators and, therefore, smaller datasetson which to train models. Ideally, most of the frames in the video dataset would be training sam-ples and only about 25% would be left for testing and validation. This would help ensure a datasetwith a more realistic data distribution of the no-go zones for the model to learn. However, thismight not currently be practical as the videos run at 25 frames per second and the video lengthcan be around 30 minutes long. This leaves the medically qualified annotators to manually anno-tate approximately 30,000 frames per laparoscopic video. One of the methods used to combatthis issue is data augmentation. However, data augmentation also has its limitations as it can onlygenerate a limited amount of variations using image transforms [47].
Consistency of annotations/lack of quality control: The no-go zone is a region consisting ofmultiple parts of the digestive system being operated on. Therefore, it is prone to annotationinconsistencies given individual frames from a surgical video, as the annotators may manuallylabel certain segments which are not technically part of this region. One of the main occurrencesof this case is where the grasper overlaps the no-go zone. In many cases, the annotators manuallyannotated the no-go zone on top of the grasper to indicate that the no-go zone was under it.Although this is an understandable error, it likely caused a drop in performance as the modelpotentially linked the tool itself with the no-go zone.
Prone to overfitting due to the similar frames being annotated: There were approximately1000 annotated frames that were available for training and validation. Therefore, most of theseframes were very similar in nature while only having certain arrangements of surgical tools andcamera angles. By training our model over several epochs with this limited sample size, it willlearn to handle only a given amount of cases. Some of the techniques to deal with this issue is totune hyperparameters such as implementing a decaying learning rate, increasing regularization,and performing data augmentation [47].
5.5 CONCLUSION AND FUTURE DIRECTIONS

The current model serves as a proof-of-concept that yields good results despite the lack of distinctlandmarks. The model should generalize to different capture platforms as different hospitals usedifferent systems. The training data should evenly sample cases where there is a large amountof bleeding and re-train using these cases. Such a scenario is common during surgery and wouldfurther enforce the need for an augmented system by providing surgeons with the location of theno-go zone in more challenging surgeries. Such a model would provide real-time feedback to sur-
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geons such that they would receive real-time prompts. The quality of segmentation annotationscan significantly vary if there isn’t a proper framework provided to analysts. Having a system inplace to verify and quality check annotations would yield more improved and consistent results.More analysis is also required to determine the relative trade-offs between coarse and fine anno-tations.

6 TRANSFER LEARNING FOR EFFICIENT VIDEO CLASSIFICATION
AND DETECTION

Contributors: Raghav Goyal, Xin Li, Andriy Levitskyy

6.1 BACKGROUND/OBJECTIVE

The task of Spatio-temporal action detection involves classifying and localizing actions both in 2-dimensional space (x and y) and 1-dimensional time coordinates. The annotations required forthis task are bounding boxes which localize actions in space (e.g. boxes around actors performingactions) and tracks actions over time, effectively forming a 3D volume also known as action tubelet[48]. Gathering such annotations can be prohibitively expensive as it not only annotating boundingboxes in space but also in time. Our aim in this project is to study this task in the light of fewor zero annotations. In particular, we use multi-modal similarity measures (lingual and visual)to transfer concepts from an existing, readily-available video classification database to the task ofspatio-temporal action detection. The multi-modal similarity measures require zero to a few targetannotations (< 5%), and we provide benchmarks and analysis of the results.
6.2 RELATED WORK

Learning with few annotations has been explored in the task of object detection. In particular, theapproaches in this category assume two sets of classes: base and novel, where base classes haveabundant data and novel classes have few or none. The overall idea is to transfer concepts from
base to novel classes using a similarity measure between the two sets of classes, in effect formingobject detectors for novel classes by leveraging already available detectors of base classes [49, 50].Another set of closely related works use object and scene priors to contextualize actions for thetask of action detection [51, 52]. A common theme among these works is to form priors for anaction based on scenes in which they occur, objects present while performing the action, and alsoother spatial and semantic priors to help classify an action. Notably, Mettes et al. [52] uses suchpriors to draw up detectors for the task of Spatio-temporal action detection which requires nodata and provide performance on AVA dataset [53]. In this work, we approach the task of Spatio-temporal action detection within the framework of transfer learning, and we use existing actionclassifiers trained on a set of classes of an existing database, and transfer the classifiers to ourtarget classes using a similarity measure between the classes.
6.3 METHOD

Dataset: We used the atomic visual actions (AVA) dataset [53] which consists of 80 action classeson 15-min video clips taken from movies. For every annotated frame in a video, all the actors are
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localized using bounding boxes along with the action label. Such annotations form the Spatio-temporal action annotations. We used AVA v2.2 The train set consists of (provide stats).
Approach Overview: We transferred off-the-shelf, pre-trained action classifiers to the task ofspatio-temporal action detection. In particular, we used action classifiers already trained on the Ki-netics dataset [54], which contains roughly half-a-million 10-sec clips over 600 action classes. Sincethe task of action classification does not require localization, the action classifiers we obtain takesas input a video clip and provide predictions over 600 Kinetics classes. The action classifiers arecomposed of a feature extractor - which takes a video and maps it to intermediate features, fol-lowed by a spatio-temporal pooling layer and a fully-connected layer to map those features tooutput predictions over 600 classes. For the task of spatio-temporal action detection on the AVAdataset, we are provided with bounding boxes of persons performing actions in a video, so we donot need to localize actors. In this case, a feature extractor takes a video clip, extracts featuresand uses the provided person bounding boxes to sample features specific to each person usingtemporal pooling and RoIAlign [55] operations, and finally uses a fully-connected layer to predictover 80 actions.
Model specifications: We used SlowFast [56] model as a feature extractor and make use of theircode [57] to form our experiments. Specific to the SlowFast model architecture, we observed thatthe feature extractor for both AVA and Kinetics action classification uses the same backbone, anddiffers only in the pooling layers to generating features for final classification. Specifically, withreference to Fig 24, the Kinetics’ model architecture pools features across a whole video clip foraction classification, while AVA’s model architecture pools features specific to each person usingRoIAlign for final classification.

Video Input
(slow + fast pathway)

([1, 3, 16, 224, 224],
[1, 3, 64, 224, 224])

Slowfast
Network
(16 x 8)

Temporal pooling
+

RoI Align (7 x 7)
+ 

FC layer (2304 x 80)

Intermediate features
([1, 2048, 16, 14, 14],
[1, 256, 64, 14, 14])

Person(s)
Bounding 

boxes

Predictions
(num person x 80)

Spatio-temporal 
pooling

+ 
FC layer (2304 x 600)

Predictions
(1 x 600)

Note: No localizers

AVA Kinetics

Figure 24: Difference between AVA and Kinetics model architecture. Specific to SlowFast [56]model architecture, the Kinetics and AVA pipeline differ in how the pooling is done. In Kinetics,pooling is done across the whole video, while in AVA, pooling is done according to each personbounding box provided.
6.3.1 TRANSFER MECHANISM

We used the above observation to come up with a transfer scheme from Kinetics to AVA which doesnot involve any extra parameters. Since the only difference between the two architectures is the
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use of non-parameterized pooling and RoI Align layers, we can replace the fully-connected layerin AVA model with the fully-connected of Kinetics model and effectively obtain Kinetics predictionfor each person in AVA dataset. This is shown in Fig 24. In summary, we used pretrained Kineticsmodel to obtain Kinetics predictions for each person in AVA dataset without losing generality orusing any extra parameters. The remaining part is to map Kinetics predictions over 600 classes to
80 AVA classes using a similarity function S ∈ R80 × R600 which we will describe further.

Video Input
(slow + fast pathway)

([1, 3, 16, 224, 224],
[1, 3, 64, 224, 224])

Slowfast
Network
(16 x 8)

Temporal pooling
+

RoI Align (7 x 7)
+ 

Kinetics FC layer (2304 x 600)

Intermediate features
([1, 2048, 16, 14, 14],
[1, 256, 64, 14, 14])

Person(s)
Bounding 

boxes

Kinetics predictions
(num person x 600)

AVA

Similarity measure

AVA predictions
(num person x 80)

Figure 25: Kinetics to AVA transfer. The figure illustrates that we first obtain Kinetics predictionsfor every person bounding box using off-the-shelf Kinetics classifiers. Then we use a similaritymeasure S which maps the Kinetics predictions to AVA predictions.
Lingual similarity. We used an off-the-shelf language model pretrained on web-sourced data6
(blogs, news, comments) to embed class labels into 300-dimensional vectors. After obtaining em-bedding for both AVA and Kinetics class labels, we computed cosine similarities between the twosets of AVA and Kinetics class labels to obtain a matrix Slin ∈ R80 × R600.
Visual similarity. We sampled 5% of the annotated data (or videos) uniformly from the train set,thereby maintaining the same distribution of number of samples per label as the train set. Weobtained Kinetics predictions (as described in Fig 25) for every annotated bounding box in thesampled data. Since we are given ground-truth AVA label for every annotation, we grouped theKinetics predictions based on ground-truth AVA label. Essentially, for the 5% sampled data, weran Kinetics classifier for each labelled bounding box, and based on the ground-truth AVA label wegroup the Kinetics predictions into a list.
After obtaining a list of Kinetics predictions for every AVA class label, we averaged out the listto obtain a 600-dimensional vector for each AVA class label, thereby forming our visual similarity

6https://spacy.io/models/en#en_core_web_md
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Table 10: Performance of different strategies and similarity measures.
Strategy Performance (mAP)
Random 3.9Visual similarity 5.9Lingual simple averaging 6.7Lingual weighted averaging 7.2Fully-supervised 29.1

Svis ∈ R80 × R600. We can interpret the similarity in the following way, for every AVA annotation,we assume that Kinetics classifiers capture the semantics of the actions, for e.g., annotations ofan AVA class fight would on average expect the Kinetics classifiers to predict semantically similarclasses conveying aggression (such as sword fighting) compared to other unrelated classes (suchas brushing teeth or crawling baby). Such associations or regularities would be reflected invisual similarity Svis.
6.4 RESULTS AND DISCUSSION

Implementation Details: We used four Nvidia Tesla-T4 GPUs for generating visual similarity from
5% of the train set, and for evaluating our model with on validation set.
Strategies for generating classifiers: Since using all similarity values can be noisy, we experi-mented with different strategies. The random strategy produces random predictions over AVAclasses. The lingual simple averaging uses top three most similar Kinetics classes for every AVAclass and average out their predictions. With respect to Figure 25, this would be similar to takingeach row of Slin, picking top three values and substituting them with 1

3 , and zeroing out rest of thevalues. lingual weighted averaging strategy is similar but it takes a weighted sum of predictionsinstead of averaging them, where weights are similarity values. The visual similarity strategy issimilar to the lingual counterparts but it uses visual similarity Svis.
6.4.1 QUANTITATIVE RESULTS

The performance of different strategies can be found in Table 10. As expected, random strategyperforms worst which indicates that our strategies despite using little to no training data makesmeaningful predictions. We also observe that lingual similarity performs better than visual sim-
ilarity. And that the weighted version of lingual similarity performs better than simple averagingwhich indicates that relative differences among similarity values contains meaningful semantic in-formation.
6.4.2 QUALITATIVE RESULTS

Lingual similarity. We look at class-wise performance comparisons between random and lingualstrategy, and list top five positive and negative relative differences in Table 11. We observe that AVAclasses which benefit the most have semantically close classes in Kinetics dataset. For e.g. the topthree similar Kinetics classes to the AVA class swim are different techniques of swim which providessignificant performance boost. On the other hand, AVA classes which degrade in performance have
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Table 11: Top Positive and Negative relative performance differences using Lingual similarity.
AVA
class

Performance
Random Strategy

(x)

Performance
Lingual similarity

(y)

Relative difference
((y - x) / x)

Top-3 similar Kinetics classes and
their similarity values

swim 0.02 26.1 964.8 swimming front crawl (0.7038)swimming backstroke (0.6811)swimming butterfly stroke (0.6676)
dance 0.02 5.9 203.7 tango dancing (0.9695)dancing ballet (0.8650)jumpstyle dancing (0.8347)
walk 0.2 26.6 136.6 walking the dog (0.7154)walking through snow (0.7121)moon walking (0.7041)
open(e.g. a window,a car door) 0.1 5.7 113.3 opening door (0.6833)opening present (0.6243)push up (0.5620)
enter 1.4 0.06 -0.955 waiting in line (0.4947)opening present (0.4914)giving or receiving award (0.4648)
crouch/kneel 42.0 2.0 -0.953 massaging legs (0.7172)bending back (0.7164)shaking hands (0.6877)
bend/bow(at the waist) 29.4 2.5 -0.914 tying bow tie (0.7165)bending back (0.6681)bending metal (0.5856)
lift(a person) 0.83 0.22 -0.733 snatch weight lifting (0.6355)lifting hat (0.5926)pushing wheelchair (0.5650)

less semantic matches (lingually) in Kinetics dataset. For e.g. the class enter has no direct matchin the Kinetics dataset. We also observe that lingual similarity can also produce unintended similarclasses. For example, in the case of class bend/bow, the most similar class is tying bow tie whichmakes sense linguistically by the use of word “bow” but differs semantically.
For computing lingual similarity we found preprocessing of class names to be crucial, as a fewAVA class names contain expanded description in parenthesis which produces non-meaningfulsimilarities. For example, the AVA class kiss (a person) tries to linguistically find similar classnames to kiss and person which fails to associate a direct match kissing in the Kinetics dataset.Therefore, getting rid of the parenthesis terms improved the performance.
Visual similarity. Top positive and negative associations are shown in Table 12. We note thatthere are positive associations such as the AVA class answer phone is able to find it’s counterpartin Kinetics dataset talking on cell phone visually. However, we note for few classes it doesn’twork, such as walk, swim.
We attribute the negative visual associations to two reasons, (1) domain mismatch: the data do-mains of AVA and Kinetics are not the same since AVA is annotated on top of movie clips whileKinetics is sourced from YouTube. This creates a domain mismatch and results in classes which do
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Table 12: Positive and negative associations in Visual similarity. The table shows positive and neg-ative associations for AVA classes along with their top similar Kinetics classes.
Positive associations Negative associations

AVA class Top similar Kinetics classes AVA class Top similar Kinetics classes

dance celebrating (0.10)salsa dancing (0.07) walk opening door (0.06)acting in play (0.04)
lie/sleep sleeping (0.14)crying (0.06) close opening door (0.36)opening refrigerator (0.08)
answer phone talking on cell phone (0.39)crying(0.07) brush teeth air drumming (0.5)tasting food (0.49)
push pushing wheelchair (0.13)pushing car (0.06) swim jumping jacks (0.42)waiting in line (0.15)

Table 13: Qualitative differences between Lingual and Visual similarities.
Lingual similarity Visual similarity

Data independent(Requires no target data to form similarity) Data dependent(Requires some target data to form similarity)
Less adaptive to data Has potential to be more adaptive to data

Less susceptible to noise in data More susceptible to noise in data

not necessarily have semantically similar matches in both the datasets. Such as the AVA class closeis visually close opening door but doesn’t have a direct corresponding match in Kinetics datasetbecause it has a too meaning, (2) class imbalance: since the AVA dataset long-tailed, forming vi-sual similarity using the data distribution leads to imperfect visual matches for classes lying on longtails. For e.g. in the 5% subsampled version of AVA dataset, the class brush teeth is present only 2times while the class watch is present 44, 471 times. Such imbalance affects the visual associationsnegatively.
6.5 LIMITATIONS AND BEST PRACTICES

Overall, we studied the multi-modal similarity measures to transfer knowledge from a readily-available source dataset to a target dataset which is expensive to annotate. In the process we usefew to no target annotations and found our approach to yield better results than random strategy.We observe qualitative and quantitative differences between lingual and visual similarities, and wesum up the differences in Table 13.
Notably, visual similarity is dependent on data which works in its favour that it can adapt to databut also leaves it susceptible to noise in data (such as class imbalance). On the other hand, lingualsimilarity can form similarities using only the class names and requires no target data which couldbe desirable in situations where no target data is available.

36 © 2022 Vector Institute



7 CONCLUSION AND FUTURE DIRECTION

Throughout the project, participants gained exposure to a variety of computer vision techniquesand use cases, allowing them explore ways in which computer vision tasks could be applied toreal-world applications. Beyond the project, there are a number of interesting avenues that canbe explored.
In terms of general approaches for future applications, some self-supervised learning models havebeen found to perform better than supervised learning in certain object detection and semanticsegmentation tasks. [58]
An additional trend that can potentially mitigate data volume concerns is auto-annotation, whichmay be especially helpful in clinical settings where use cases are narrow and data is sparse.
In terms of anomaly and semantic segmentation application in image data, potential future di-rections include using techniques such as open-set segmentation, which effectively combine bothanomaly detection and semantic segmentation to identify both predefined classes and anomalyclasses, as well as applying the models to different data sets to evaluate performance and deter-mine additional benchmarks.
In terms of semantic segmentation applications in cholecystectomy videos, one major challengewas the limited amount of labelled data available. Future mitigation approaches include furtherhyper-parameter tuning, increasing regularization and using data augmentation techniques to in-crease the volume of training data.
In terms of the video applications in traffic incident detection, future work could focus on differ-ent, larger data sets that prevent over-fitting. A related direction is to conduct additional hyper-parameter tuning and experiment with backbones to account for potential over-fitting issues.
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